45 lines
964 B
Markdown
45 lines
964 B
Markdown
![]() |
---
|
|||
|
id: 5900f4b11000cf542c50ffc3
|
|||
|
title: 'Problem 324: Building a tower'
|
|||
|
challengeType: 5
|
|||
|
forumTopicId: 301981
|
|||
|
dashedName: problem-324-building-a-tower
|
|||
|
---
|
|||
|
|
|||
|
# --description--
|
|||
|
|
|||
|
Let $f(n)$ represent the number of ways one can fill a $3×3×n$ tower with blocks of $2×1×1$. You're allowed to rotate the blocks in any way you like; however, rotations, reflections etc of the tower itself are counted as distinct.
|
|||
|
|
|||
|
For example (with $q = 100\\,000\\,007$):
|
|||
|
|
|||
|
$$\begin{align} & f(2) = 229, \\\\ & f(4) = 117\\,805, \\\\ & f(10)\bmod q = 96\\,149\\,360, \\\\ & f({10}^3)\bmod q = 24\\,806\\,056, \\\\ & f({10}^6)\bmod q = 30\\,808\\,124. \end{align}$$
|
|||
|
|
|||
|
Find $f({10}^{10000})\bmod 100\\,000\\,007$.
|
|||
|
|
|||
|
# --hints--
|
|||
|
|
|||
|
`buildingTower()` should return `96972774`.
|
|||
|
|
|||
|
```js
|
|||
|
assert.strictEqual(buildingTower(), 96972774);
|
|||
|
```
|
|||
|
|
|||
|
# --seed--
|
|||
|
|
|||
|
## --seed-contents--
|
|||
|
|
|||
|
```js
|
|||
|
function buildingTower() {
|
|||
|
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
buildingTower();
|
|||
|
```
|
|||
|
|
|||
|
# --solutions--
|
|||
|
|
|||
|
```js
|
|||
|
// solution required
|
|||
|
```
|