Files
freeCodeCamp/curriculum/challenges/japanese/10-coding-interview-prep/project-euler/problem-384-rudin-shapiro-sequence.md

63 lines
1.7 KiB
Markdown
Raw Normal View History

---
id: 5900f4ed1000cf542c50fffe
title: 'Problem 384: Rudin-Shapiro sequence'
challengeType: 5
forumTopicId: 302048
dashedName: problem-384-rudin-shapiro-sequence
---
# --description--
Define the sequence $a(n)$ as the number of adjacent pairs of ones in the binary expansion of $n$ (possibly overlapping).
E.g.: $a(5) = a({101}_2) = 0$, $a(6) = a({110}_2) = 1$, $a(7) = a({111}_2) = 2$
Define the sequence $b(n) = {(-1)}^{a(n)}$. This sequence is called the Rudin-Shapiro sequence.
Also consider the summatory sequence of $b(n)$: $s(n) = \displaystyle\sum_{i = 0}^{n} b(i)$.
The first couple of values of these sequences are:
$$\begin{array}{lr} n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\\\ a(n) & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 2 \\\\ b(n) & 1 & 1 & 1 & -1 & 1 & 1 & -1 & 1 \\\\ s(n) & 1 & 2 & 3 & 2 & 3 & 4 & 3 & 4 \end{array}$$
The sequence $s(n)$ has the remarkable property that all elements are positive and every positive integer $k$ occurs exactly $k$ times.
Define $g(t, c)$, with $1 ≤ c ≤ t$, as the index in $s(n)$ for which $t$ occurs for the $c$'th time in $s(n)$.
E.g.: $g(3, 3) = 6$, $g(4, 2) = 7$ and $g(54321, 12345) = 1\\,220\\,847\\,710$.
Let $F(n)$ be the fibonacci sequence defined by:
$$\begin{align} & F(0) = F(1) = 1 \text{ and} \\\\ & F(n) = F(n - 1) + F(n - 2) \text{ for } n > 1. \end{align}$$
Define $GF(t) = g(F(t), F(t - 1))$.
Find $\sum GF(t)$ for$ 2 ≤ t ≤ 45$.
# --hints--
`rudinShapiroSequence()` should return `3354706415856333000`.
```js
assert.strictEqual(rudinShapiroSequence(), 3354706415856333000);
```
# --seed--
## --seed-contents--
```js
function rudinShapiroSequence() {
return true;
}
rudinShapiroSequence();
```
# --solutions--
```js
// solution required
```