53 lines
1.4 KiB
Markdown
53 lines
1.4 KiB
Markdown
![]() |
---
|
||
|
id: 5900f5241000cf542c510036
|
||
|
title: 'Problem 437: Fibonacci primitive roots'
|
||
|
challengeType: 5
|
||
|
forumTopicId: 302108
|
||
|
dashedName: problem-437-fibonacci-primitive-roots
|
||
|
---
|
||
|
|
||
|
# --description--
|
||
|
|
||
|
When we calculate $8^n$ modulo 11 for $n = 0$ to 9 we get: 1, 8, 9, 6, 4, 10, 3, 2, 5, 7.
|
||
|
|
||
|
As we see all possible values from 1 to 10 occur. So 8 is a primitive root of 11.
|
||
|
|
||
|
But there is more:
|
||
|
|
||
|
If we take a closer look we see:
|
||
|
|
||
|
$$\begin{align} & 1 + 8 = 9 \\\\ & 8 + 9 = 17 ≡ 6\bmod 11 \\\\ & 9 + 6 = 15 ≡ 4\bmod 11 \\\\ & 6 + 4 = 10 \\\\ & 4 + 10 = 14 ≡ 3\bmod 11 \\\\ & 10 + 3 = 13 ≡ 2\bmod 11 \\\\ & 3 + 2 = 5 \\\\ & 2 + 5 = 7 \\\\ & 5 + 7 = 12 ≡ 1\bmod 11. \end{align}$$
|
||
|
|
||
|
So the powers of 8 mod 11 are cyclic with period 10, and $8^n + 8^{n + 1} ≡ 8^{n + 2} (\text{mod } 11)$. 8 is called a Fibonacci primitive root of 11.
|
||
|
|
||
|
Not every prime has a Fibonacci primitive root. There are 323 primes less than 10000 with one or more Fibonacci primitive roots and the sum of these primes is 1480491.
|
||
|
|
||
|
Find the sum of the primes less than $100\\,000\\,000$ with at least one Fibonacci primitive root.
|
||
|
|
||
|
# --hints--
|
||
|
|
||
|
`fibonacciPrimitiveRoots()` should return `74204709657207`.
|
||
|
|
||
|
```js
|
||
|
assert.strictEqual(fibonacciPrimitiveRoots(), 74204709657207);
|
||
|
```
|
||
|
|
||
|
# --seed--
|
||
|
|
||
|
## --seed-contents--
|
||
|
|
||
|
```js
|
||
|
function fibonacciPrimitiveRoots() {
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
fibonacciPrimitiveRoots();
|
||
|
```
|
||
|
|
||
|
# --solutions--
|
||
|
|
||
|
```js
|
||
|
// solution required
|
||
|
```
|