51 lines
970 B
Markdown
51 lines
970 B
Markdown
![]() |
---
|
||
|
id: 5900f52c1000cf542c51003d
|
||
|
title: 'Problem 446: Retractions B'
|
||
|
challengeType: 5
|
||
|
forumTopicId: 302118
|
||
|
dashedName: problem-446-retractions-b
|
||
|
---
|
||
|
|
||
|
# --description--
|
||
|
|
||
|
For every integer $n > 1$, the family of functions $f_{n, a, b}$ is defined by:
|
||
|
|
||
|
$f_{n, a, b}(x) ≡ ax + b\bmod n$ for $a, b, x$ integer and $0 \lt a \lt n$, $0 \le b \lt n$, $0 \le x \lt n$.
|
||
|
|
||
|
We will call $f_{n, a, b}$ a retraction if $f_{n, a, b}(f_{n, a, b}(x)) \equiv f_{n, a, b}(x)\bmod n$ for every $0 \le x \lt n$.
|
||
|
|
||
|
Let $R(n)$ be the number of retractions for $n$.
|
||
|
|
||
|
$F(N) = \displaystyle\sum_{n = 1}^N R(n^4 + 4)$.
|
||
|
|
||
|
$F(1024) = 77\\,532\\,377\\,300\\,600$.
|
||
|
|
||
|
Find $F({10}^7)$. Give your answer modulo $1\\,000\\,000\\,007$.
|
||
|
|
||
|
# --hints--
|
||
|
|
||
|
`retractionsB()` should return `907803852`.
|
||
|
|
||
|
```js
|
||
|
assert.strictEqual(retractionsB(), 907803852);
|
||
|
```
|
||
|
|
||
|
# --seed--
|
||
|
|
||
|
## --seed-contents--
|
||
|
|
||
|
```js
|
||
|
function retractionsB() {
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
retractionsB();
|
||
|
```
|
||
|
|
||
|
# --solutions--
|
||
|
|
||
|
```js
|
||
|
// solution required
|
||
|
```
|