53 lines
1.1 KiB
Markdown
53 lines
1.1 KiB
Markdown
![]() |
---
|
||
|
id: 5900f5311000cf542c510042
|
||
|
title: 'Problem 451: Modular inverses'
|
||
|
challengeType: 5
|
||
|
forumTopicId: 302124
|
||
|
dashedName: problem-451-modular-inverses
|
||
|
---
|
||
|
|
||
|
# --description--
|
||
|
|
||
|
Consider the number 15.
|
||
|
|
||
|
There are eight positive numbers less than 15 which are coprime to 15: 1, 2, 4, 7, 8, 11, 13, 14.
|
||
|
|
||
|
The modular inverses of these numbers modulo 15 are: 1, 8, 4, 13, 2, 11, 7, 14 because
|
||
|
|
||
|
$$\begin{align} & 1 \times 1\bmod 15 = 1 \\\\ & 2 \times 8 = 16\bmod 15 = 1 \\\\ & 4 \times 4 = 16\bmod 15 = 1 \\\\ & 7 \times 13 = 91\bmod 15 = 1 \\\\ & 11 \times 11 = 121\bmod 15 = 1 \\\\ & 14 \times 14 = 196\bmod 15 = 1 \end{align}$$
|
||
|
|
||
|
Let $I(n)$ be the largest positive number $m$ smaller than $n - 1$ such that the modular inverse of $m$ modulo $n$ equals $m$ itself.
|
||
|
|
||
|
So $I(15) = 11$.
|
||
|
|
||
|
Also $I(100) = 51$ and $I(7) = 1$.
|
||
|
|
||
|
Find $\sum I(n)$ for $3 ≤ n ≤ 2 \times {10}^7$
|
||
|
|
||
|
# --hints--
|
||
|
|
||
|
`modularInverses()` should return `153651073760956`.
|
||
|
|
||
|
```js
|
||
|
assert.strictEqual(modularInverses(), 153651073760956);
|
||
|
```
|
||
|
|
||
|
# --seed--
|
||
|
|
||
|
## --seed-contents--
|
||
|
|
||
|
```js
|
||
|
function modularInverses() {
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
modularInverses();
|
||
|
```
|
||
|
|
||
|
# --solutions--
|
||
|
|
||
|
```js
|
||
|
// solution required
|
||
|
```
|