48 lines
1.5 KiB
Markdown
48 lines
1.5 KiB
Markdown
![]() |
---
|
|||
|
title: Floyd Warshall Algorithm
|
|||
|
localeTitle: Floyd Warshall算法
|
|||
|
---
|
|||
|
## Floyd Warshall算法
|
|||
|
|
|||
|
Floyd Warshall算法是一种很好的算法,用于查找图中所有顶点之间的最短距离。它具有非常简洁的算法和O(V ^ 3)时间复杂度(其中V是顶点数)。它可以与负权重一起使用,但图表中不得出现负权重循环。
|
|||
|
|
|||
|
### 评估
|
|||
|
|
|||
|
空间复杂度:O(V ^ 2)
|
|||
|
|
|||
|
更糟糕的案例时间复杂性:O(V ^ 3)
|
|||
|
|
|||
|
### Python实现
|
|||
|
|
|||
|
```python
|
|||
|
# A large value as infinity
|
|||
|
inf = 1e10
|
|||
|
|
|||
|
def floyd_warshall(weights):
|
|||
|
V = len(weights)
|
|||
|
distance_matrix = weights
|
|||
|
for k in range(V):
|
|||
|
next_distance_matrix = [list(row) for row in distance_matrix] # make a copy of distance matrix
|
|||
|
for i in range(V):
|
|||
|
for j in range(V):
|
|||
|
# Choose if the k vertex can work as a path with shorter distance
|
|||
|
next_distance_matrix[i][j] = min(distance_matrix[i][j], distance_matrix[i][k] + distance_matrix[k][j])
|
|||
|
distance_matrix = next_distance_matrix # update
|
|||
|
return distance_matrix
|
|||
|
|
|||
|
# A graph represented as Adjacency matrix
|
|||
|
graph = [
|
|||
|
[0, inf, inf, -3],
|
|||
|
[inf, 0, inf, 8],
|
|||
|
[inf, 4, 0, -2],
|
|||
|
[5, inf, 3, 0]
|
|||
|
]
|
|||
|
|
|||
|
print(floyd_warshall(graph))
|
|||
|
```
|
|||
|
|
|||
|
#### 更多信息:
|
|||
|
|
|||
|
[图表](https://github.com/freecodecamp/guides/computer-science/data-structures/graphs/index.md)
|
|||
|
|
|||
|
[Floyd Warshall - 维基百科](https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm)
|