53 lines
		
	
	
		
			965 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			53 lines
		
	
	
		
			965 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | |||
|  | id: 5900f3e61000cf542c50fef9 | |||
|  | title: 'Problem 122: Efficient exponentiation' | |||
|  | challengeType: 5 | |||
|  | forumTopicId: 301749 | |||
|  | dashedName: problem-122-efficient-exponentiation | |||
|  | --- | |||
|  | 
 | |||
|  | # --description--
 | |||
|  | 
 | |||
|  | The most naive way of computing n15 requires fourteen multiplications: | |||
|  | 
 | |||
|  | n × n × ... × n = n15 | |||
|  | 
 | |||
|  | But using a "binary" method you can compute it in six multiplications: | |||
|  | 
 | |||
|  | n × n = n2n2 × n2 = n4n4 × n4 = n8n8 × n4 = n12n12 × n2 = n14n14 × n = n15 | |||
|  | 
 | |||
|  | However it is yet possible to compute it in only five multiplications: | |||
|  | 
 | |||
|  | n × n = n2n2 × n = n3n3 × n3 = n6n6 × n6 = n12n12 × n3 = n15 | |||
|  | 
 | |||
|  | We shall define m(k) to be the minimum number of multiplications to compute nk; for example m(15) = 5. | |||
|  | 
 | |||
|  | For 1 ≤ k ≤ 200, find ∑ m(k). | |||
|  | 
 | |||
|  | # --hints--
 | |||
|  | 
 | |||
|  | `euler122()` should return 1582. | |||
|  | 
 | |||
|  | ```js | |||
|  | assert.strictEqual(euler122(), 1582); | |||
|  | ``` | |||
|  | 
 | |||
|  | # --seed--
 | |||
|  | 
 | |||
|  | ## --seed-contents--
 | |||
|  | 
 | |||
|  | ```js | |||
|  | function euler122() { | |||
|  | 
 | |||
|  |   return true; | |||
|  | } | |||
|  | 
 | |||
|  | euler122(); | |||
|  | ``` | |||
|  | 
 | |||
|  | # --solutions--
 | |||
|  | 
 | |||
|  | ```js | |||
|  | // solution required | |||
|  | ``` |