55 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			55 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| 
								 | 
							
								---
							 | 
						|||
| 
								 | 
							
								id: 5900f4201000cf542c50ff33
							 | 
						|||
| 
								 | 
							
								title: 'Problem 180: Rational zeros of a function of three variables'
							 | 
						|||
| 
								 | 
							
								challengeType: 5
							 | 
						|||
| 
								 | 
							
								forumTopicId: 301816
							 | 
						|||
| 
								 | 
							
								dashedName: problem-180-rational-zeros-of-a-function-of-three-variables
							 | 
						|||
| 
								 | 
							
								---
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								# --description--
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								For any integer n, consider the three functions
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								f1,n(x,y,z) = xn+1 + yn+1 − zn+1f2,n(x,y,z) = (xy + yz + zx)\*(xn-1 + yn-1 − zn-1)f3,n(x,y,z) = xyz\*(xn-2 + yn-2 − zn-2)
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								and their combination
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								fn(x,y,z) = f1,n(x,y,z) + f2,n(x,y,z) − f3,n(x,y,z)
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								We call (x,y,z) a golden triple of order k if x, y, and z are all rational numbers of the form a / b with
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								0 < a < b ≤ k and there is (at least) one integer n, so that fn(x,y,z) = 0.
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								Let s(x,y,z) = x + y + z.
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								Let t = u / v be the sum of all distinct s(x,y,z) for all golden triples (x,y,z) of order 35. All the s(x,y,z) and t must be in reduced form.
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								Find u + v.
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								# --hints--
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								`euler180()` should return 285196020571078980.
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								```js
							 | 
						|||
| 
								 | 
							
								assert.strictEqual(euler180(), 285196020571078980);
							 | 
						|||
| 
								 | 
							
								```
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								# --seed--
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								## --seed-contents--
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								```js
							 | 
						|||
| 
								 | 
							
								function euler180() {
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								  return true;
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								euler180();
							 | 
						|||
| 
								 | 
							
								```
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								# --solutions--
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								```js
							 | 
						|||
| 
								 | 
							
								// solution required
							 | 
						|||
| 
								 | 
							
								```
							 |