47 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			47 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | ||
|  | id: 5900f4381000cf542c50ff4a | ||
|  | title: 'Problem 203: Squarefree Binomial Coefficients' | ||
|  | challengeType: 5 | ||
|  | forumTopicId: 301844 | ||
|  | dashedName: problem-203-squarefree-binomial-coefficients | ||
|  | --- | ||
|  | 
 | ||
|  | # --description--
 | ||
|  | 
 | ||
|  | The binomial coefficients nCk can be arranged in triangular form, Pascal's triangle, like this: | ||
|  | 
 | ||
|  | 111121133114641151010511615201561172135352171 ......... | ||
|  | 
 | ||
|  | It can be seen that the first eight rows of Pascal's triangle contain twelve distinct numbers: 1, 2, 3, 4, 5, 6, 7, 10, 15, 20, 21 and 35. | ||
|  | 
 | ||
|  | A positive integer n is called squarefree if no square of a prime divides n. Of the twelve distinct numbers in the first eight rows of Pascal's triangle, all except 4 and 20 are squarefree. The sum of the distinct squarefree numbers in the first eight rows is 105. | ||
|  | 
 | ||
|  | Find the sum of the distinct squarefree numbers in the first 51 rows of Pascal's triangle. | ||
|  | 
 | ||
|  | # --hints--
 | ||
|  | 
 | ||
|  | `euler203()` should return 34029210557338. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(euler203(), 34029210557338); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --seed--
 | ||
|  | 
 | ||
|  | ## --seed-contents--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | function euler203() { | ||
|  | 
 | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | euler203(); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --solutions--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | // solution required | ||
|  | ``` |