49 lines
		
	
	
		
			981 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			49 lines
		
	
	
		
			981 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | ||
|  | id: 5900f4421000cf542c50ff55 | ||
|  | title: 'Problem 214: Totient Chains' | ||
|  | challengeType: 5 | ||
|  | forumTopicId: 301856 | ||
|  | dashedName: problem-214-totient-chains | ||
|  | --- | ||
|  | 
 | ||
|  | # --description--
 | ||
|  | 
 | ||
|  | Let φ be Euler's totient function, i.e. for a natural number n, | ||
|  | 
 | ||
|  | φ(n) is the number of k, 1 ≤ k ≤ n, for which gcd(k,n) = 1. | ||
|  | 
 | ||
|  | By iterating φ, each positive integer generates a decreasing chain of numbers ending in 1. E.g. if we start with 5 the sequence 5,4,2,1 is generated. Here is a listing of all chains with length 4: | ||
|  | 
 | ||
|  | 5,4,2,1 7,6,2,1 8,4,2,1 9,6,2,1 10,4,2,1 12,4,2,1 14,6,2,1 18,6,2,1 | ||
|  | 
 | ||
|  | Only two of these chains start with a prime, their sum is 12. | ||
|  | 
 | ||
|  | What is the sum of all primes less than 40000000 which generate a chain of length 25? | ||
|  | 
 | ||
|  | # --hints--
 | ||
|  | 
 | ||
|  | `euler214()` should return 1677366278943. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(euler214(), 1677366278943); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --seed--
 | ||
|  | 
 | ||
|  | ## --seed-contents--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | function euler214() { | ||
|  | 
 | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | euler214(); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --solutions--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | // solution required | ||
|  | ``` |