51 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			51 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | ||
|  | id: 5900f49b1000cf542c50ffad | ||
|  | title: 'Problem 302: Strong Achilles Numbers' | ||
|  | challengeType: 5 | ||
|  | forumTopicId: 301956 | ||
|  | dashedName: problem-302-strong-achilles-numbers | ||
|  | --- | ||
|  | 
 | ||
|  | # --description--
 | ||
|  | 
 | ||
|  | A positive integer n is powerful if p2 is a divisor of n for every prime factor p in n. | ||
|  | 
 | ||
|  | A positive integer n is a perfect power if n can be expressed as a power of another positive integer. | ||
|  | 
 | ||
|  | A positive integer n is an Achilles number if n is powerful but not a perfect power. For example, 864 and 1800 are Achilles numbers: 864 = 25·33 and 1800 = 23·32·52. | ||
|  | 
 | ||
|  | We shall call a positive integer S a Strong Achilles number if both S and φ(S) are Achilles numbers.1 For example, 864 is a Strong Achilles number: φ(864) = 288 = 25·32. However, 1800 isn't a Strong Achilles number because: φ(1800) = 480 = 25·31·51. | ||
|  | 
 | ||
|  | There are 7 Strong Achilles numbers below 104 and 656 below 108. | ||
|  | 
 | ||
|  | How many Strong Achilles numbers are there below 1018? | ||
|  | 
 | ||
|  | 1 φ denotes Euler's totient function. | ||
|  | 
 | ||
|  | # --hints--
 | ||
|  | 
 | ||
|  | `euler302()` should return 1170060. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(euler302(), 1170060); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --seed--
 | ||
|  | 
 | ||
|  | ## --seed-contents--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | function euler302() { | ||
|  | 
 | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | euler302(); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --solutions--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | // solution required | ||
|  | ``` |