90 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			90 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | ||
|  | id: 5900f3a11000cf542c50feb4 | ||
|  | title: 'Problem 53: Combinatoric selections' | ||
|  | challengeType: 5 | ||
|  | forumTopicId: 302164 | ||
|  | dashedName: problem-53-combinatoric-selections | ||
|  | --- | ||
|  | 
 | ||
|  | # --description--
 | ||
|  | 
 | ||
|  | There are exactly ten ways of selecting three from five, 12345: | ||
|  | 
 | ||
|  | <div style='text-align: center;'>123, 124, 125, 134, 135, 145, 234, 235, 245, and 345</div> | ||
|  | 
 | ||
|  | In combinatorics, we use the notation, $\\displaystyle \\binom 5 3 = 10$ | ||
|  | 
 | ||
|  | In general, $\\displaystyle \\binom n r = \\dfrac{n!}{r!(n-r)!}$, where $r \\le n$, $n! = n \\times (n-1) \\times ... \\times 3 \\times 2 \\times 1$, and $0! = 1$. | ||
|  | 
 | ||
|  | It is not until $n = 23$, that a value exceeds one-million: $\\displaystyle \\binom {23} {10} = 1144066$. | ||
|  | 
 | ||
|  | How many, not necessarily distinct, values of $\\displaystyle \\binom n r$ for $1 \\le n \\le 100$, are greater than one-million? | ||
|  | 
 | ||
|  | # --hints--
 | ||
|  | 
 | ||
|  | `combinatoricSelections(1000)` should return a number. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert(typeof combinatoricSelections(1000) === 'number'); | ||
|  | ``` | ||
|  | 
 | ||
|  | `combinatoricSelections(1000)` should return 4626. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(combinatoricSelections(1000), 4626); | ||
|  | ``` | ||
|  | 
 | ||
|  | `combinatoricSelections(10000)` should return 4431. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(combinatoricSelections(10000), 4431); | ||
|  | ``` | ||
|  | 
 | ||
|  | `combinatoricSelections(100000)` should return 4255. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(combinatoricSelections(100000), 4255); | ||
|  | ``` | ||
|  | 
 | ||
|  | `combinatoricSelections(1000000)` should return 4075. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(combinatoricSelections(1000000), 4075); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --seed--
 | ||
|  | 
 | ||
|  | ## --seed-contents--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | function combinatoricSelections(limit) { | ||
|  | 
 | ||
|  |   return 1; | ||
|  | } | ||
|  | 
 | ||
|  | combinatoricSelections(1000000); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --solutions--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | function combinatoricSelections(limit) { | ||
|  |     const factorial = n => | ||
|  |         Array.apply(null, { length: n }) | ||
|  |             .map((_, i) => i + 1) | ||
|  |             .reduce((p, c) => p * c, 1); | ||
|  | 
 | ||
|  |     let result = 0; | ||
|  |     const nMax = 100; | ||
|  | 
 | ||
|  |     for (let n = 1; n <= nMax; n++) { | ||
|  |         for (let r = 0; r <= n; r++) { | ||
|  |             if (factorial(n) / (factorial(r) * factorial(n - r)) >= limit) | ||
|  |                 result++; | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     return result; | ||
|  | } | ||
|  | ``` |