98 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			98 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | ||
|  | id: 5e4ce2f5ac708cc68c1df261 | ||
|  | title: Linear congruential generator | ||
|  | challengeType: 5 | ||
|  | forumTopicId: 385266 | ||
|  | dashedName: linear-congruential-generator | ||
|  | --- | ||
|  | 
 | ||
|  | # --description--
 | ||
|  | 
 | ||
|  | The [linear congruential generator](https://en.wikipedia.org/wiki/linear congruential generator) is a very simple example of a [random number generator](http://rosettacode.org/wiki/random number generator). All linear congruential generators use this formula: | ||
|  | 
 | ||
|  | $$r_{n + 1} = (a \times r_n + c) \bmod m$$ | ||
|  | 
 | ||
|  | Where: | ||
|  | 
 | ||
|  | <ul> | ||
|  | <li>$ r_0 $ is a seed.</li> | ||
|  | <li>$r_1$, $r_2$, $r_3$, ..., are the random numbers.</li> | ||
|  | <li>$a$, $c$, $m$ are constants.</li> | ||
|  | </ul> | ||
|  | 
 | ||
|  | If one chooses the values of $a$, $c$ and $m$ with care, then the generator produces a uniform distribution of integers from $0$ to $m - 1$. | ||
|  | 
 | ||
|  | LCG numbers have poor quality. $r_n$ and $r\_{n + 1}$ are not independent, as true random numbers would be. Anyone who knows $r_n$ can predict $r\_{n + 1}$, therefore LCG is not cryptographically secure. The LCG is still good enough for simple tasks like [Miller-Rabin primality test](http://rosettacode.org/wiki/Miller-Rabin primality test), or [FreeCell deals](http://rosettacode.org/wiki/deal cards for FreeCell). Among the benefits of the LCG, one can easily reproduce a sequence of numbers, from the same $r_0$. One can also reproduce such sequence with a different programming language, because the formula is so simple. | ||
|  | 
 | ||
|  | # --instructions--
 | ||
|  | 
 | ||
|  | Write a function that takes $r_0,a,c,m,n$ as parameters and returns $r_n$. | ||
|  | 
 | ||
|  | # --hints--
 | ||
|  | 
 | ||
|  | `linearCongGenerator` should be a function. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert(typeof linearCongGenerator == 'function'); | ||
|  | ``` | ||
|  | 
 | ||
|  | `linearCongGenerator(324, 1145, 177, 2148, 3)` should return a number. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert(typeof linearCongGenerator(324, 1145, 177, 2148, 3) == 'number'); | ||
|  | ``` | ||
|  | 
 | ||
|  | `linearCongGenerator(324, 1145, 177, 2148, 3)` should return `855`. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.equal(linearCongGenerator(324, 1145, 177, 2148, 3), 855); | ||
|  | ``` | ||
|  | 
 | ||
|  | `linearCongGenerator(234, 11245, 145, 83648, 4)` should return `1110`. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.equal(linearCongGenerator(234, 11245, 145, 83648, 4), 1110); | ||
|  | ``` | ||
|  | 
 | ||
|  | `linearCongGenerator(85, 11, 1234, 214748, 5)` should return `62217`. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.equal(linearCongGenerator(85, 11, 1234, 214748, 5), 62217); | ||
|  | ``` | ||
|  | 
 | ||
|  | `linearCongGenerator(0, 1103515245, 12345, 2147483648, 1)` should return `12345`. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.equal(linearCongGenerator(0, 1103515245, 12345, 2147483648, 1), 12345); | ||
|  | ``` | ||
|  | 
 | ||
|  | `linearCongGenerator(0, 1103515245, 12345, 2147483648, 2)` should return `1406932606`. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.equal( | ||
|  |   linearCongGenerator(0, 1103515245, 12345, 2147483648, 2), | ||
|  |   1406932606 | ||
|  | ); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --seed--
 | ||
|  | 
 | ||
|  | ## --seed-contents--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | function linearCongGenerator(r0, a, c, m, n) { | ||
|  | 
 | ||
|  | } | ||
|  | ``` | ||
|  | 
 | ||
|  | # --solutions--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | function linearCongGenerator(r0, a, c, m, n) { | ||
|  |     for (let i = 0; i < n; i++) { | ||
|  |         r0 = (a * r0 + c) % m; | ||
|  |     } | ||
|  |     return r0; | ||
|  | } | ||
|  | ``` |