| 
									
										
										
										
											2021-05-05 10:13:49 -07:00
										 |  |  | --- | 
					
						
							|  |  |  | id: 5e8f2f13c4cdbe86b5c72d95 | 
					
						
							| 
									
										
										
										
											2021-07-16 11:03:16 +05:30
										 |  |  | title: '神經網絡:創建模型' | 
					
						
							| 
									
										
										
										
											2021-05-05 10:13:49 -07:00
										 |  |  | challengeType: 11 | 
					
						
							|  |  |  | videoId: K8bz1bmOCTw | 
					
						
							| 
									
										
										
										
											2021-10-03 12:24:27 -07:00
										 |  |  | bilibiliIds: | 
					
						
							|  |  |  |   aid: 848109040 | 
					
						
							|  |  |  |   bvid: BV1EL4y1878f | 
					
						
							|  |  |  |   cid: 409130886 | 
					
						
							| 
									
										
										
										
											2021-05-05 10:13:49 -07:00
										 |  |  | dashedName: neural-networks-creating-a-model | 
					
						
							|  |  |  | --- | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # --question--
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ## --text--
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-07-16 11:03:16 +05:30
										 |  |  | 填寫下面的空白,建立一個密集層的順序模型。 | 
					
						
							| 
									
										
										
										
											2021-05-05 10:13:49 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | ```py | 
					
						
							|  |  |  | model = __A__.__B__([ | 
					
						
							|  |  |  |     __A__.layers.Flatten(input_shape=(28, 28)), | 
					
						
							|  |  |  |     __A__.layers.__C__(128, activation='relu'), | 
					
						
							|  |  |  |     __A__.layers.__C__(10, activation='softmax') | 
					
						
							|  |  |  | ]) | 
					
						
							|  |  |  | ``` | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ## --answers--
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | A: `keras` | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | B: `Sequential` | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | C: `Dense` | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | --- | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | A: `tf` | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | B: `Sequential` | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | C: `Categorical` | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | --- | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | A: `keras` | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | B: `sequential` | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | C: `dense` | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ## --video-solution--
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 1 | 
					
						
							|  |  |  | 
 |