45 lines
		
	
	
		
			1.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			45 lines
		
	
	
		
			1.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | |||
|  | id: 5900f4601000cf542c50ff73 | |||
|  | title: 'Problem 243: Resilience' | |||
|  | challengeType: 5 | |||
|  | forumTopicId: 301890 | |||
|  | dashedName: problem-243-resilience | |||
|  | --- | |||
|  | 
 | |||
|  | # --description--
 | |||
|  | 
 | |||
|  | A positive fraction whose numerator is less than its denominator is called a proper fraction. | |||
|  | 
 | |||
|  | For any denominator, d, there will be d−1 proper fractions; for example, with d = 12:1/12 , 2/12 , 3/12 , 4/12 , 5/12 , 6/12 , 7/12 , 8/12 , 9/12 , 10/12 , 11/12 . | |||
|  | 
 | |||
|  | We shall call a fraction that cannot be cancelled down a resilient fraction. Furthermore we shall define the resilience of a denominator, R(d), to be the ratio of its proper fractions that are resilient; for example, R(12) = 4/11 . In fact, d = 12 is the smallest denominator having a resilience R(d) < 4/10 . | |||
|  | 
 | |||
|  | Find the smallest denominator d, having a resilience R(d) < 15499/94744 . | |||
|  | 
 | |||
|  | # --hints--
 | |||
|  | 
 | |||
|  | `euler243()` should return 892371480. | |||
|  | 
 | |||
|  | ```js | |||
|  | assert.strictEqual(euler243(), 892371480); | |||
|  | ``` | |||
|  | 
 | |||
|  | # --seed--
 | |||
|  | 
 | |||
|  | ## --seed-contents--
 | |||
|  | 
 | |||
|  | ```js | |||
|  | function euler243() { | |||
|  | 
 | |||
|  |   return true; | |||
|  | } | |||
|  | 
 | |||
|  | euler243(); | |||
|  | ``` | |||
|  | 
 | |||
|  | # --solutions--
 | |||
|  | 
 | |||
|  | ```js | |||
|  | // solution required | |||
|  | ``` |