53 lines
		
	
	
		
			965 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			53 lines
		
	
	
		
			965 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| 
								 | 
							
								---
							 | 
						|||
| 
								 | 
							
								id: 5900f3e61000cf542c50fef9
							 | 
						|||
| 
								 | 
							
								title: 'Problem 122: Efficient exponentiation'
							 | 
						|||
| 
								 | 
							
								challengeType: 5
							 | 
						|||
| 
								 | 
							
								forumTopicId: 301749
							 | 
						|||
| 
								 | 
							
								dashedName: problem-122-efficient-exponentiation
							 | 
						|||
| 
								 | 
							
								---
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								# --description--
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								The most naive way of computing n15 requires fourteen multiplications:
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								n × n × ... × n = n15
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								But using a "binary" method you can compute it in six multiplications:
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								n × n = n2n2 × n2 = n4n4 × n4 = n8n8 × n4 = n12n12 × n2 = n14n14 × n = n15
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								However it is yet possible to compute it in only five multiplications:
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								n × n = n2n2 × n = n3n3 × n3 = n6n6 × n6 = n12n12 × n3 = n15
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								We shall define m(k) to be the minimum number of multiplications to compute nk; for example m(15) = 5.
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								For 1 ≤ k ≤ 200, find ∑ m(k).
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								# --hints--
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								`euler122()` should return 1582.
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								```js
							 | 
						|||
| 
								 | 
							
								assert.strictEqual(euler122(), 1582);
							 | 
						|||
| 
								 | 
							
								```
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								# --seed--
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								## --seed-contents--
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								```js
							 | 
						|||
| 
								 | 
							
								function euler122() {
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								  return true;
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								euler122();
							 | 
						|||
| 
								 | 
							
								```
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								# --solutions--
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								```js
							 | 
						|||
| 
								 | 
							
								// solution required
							 | 
						|||
| 
								 | 
							
								```
							 |