55 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			55 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | |||
|  | id: 5900f3f51000cf542c50ff08 | |||
|  | title: 'Problem 137: Fibonacci golden nuggets' | |||
|  | challengeType: 5 | |||
|  | forumTopicId: 301765 | |||
|  | dashedName: problem-137-fibonacci-golden-nuggets | |||
|  | --- | |||
|  | 
 | |||
|  | # --description--
 | |||
|  | 
 | |||
|  | Consider the infinite polynomial series AF(x) = xF1 + x2F2 + x3F3 + ..., where Fk is the kth term in the Fibonacci sequence: 1, 1, 2, 3, 5, 8, ... ; that is, Fk = Fk−1 + Fk−2, F1 = 1 and F2 = 1. | |||
|  | 
 | |||
|  | For this problem we shall be interested in values of x for which AF(x) is a positive integer. | |||
|  | 
 | |||
|  | Surprisingly AF(1/2) | |||
|  | 
 | |||
|  | = | |||
|  | 
 | |||
|  | (1/2).1 + (1/2)2.1 + (1/2)3.2 + (1/2)4.3 + (1/2)5.5 + ... | |||
|  | 
 | |||
|  | = 1/2 + 1/4 + 2/8 + 3/16 + 5/32 + ... | |||
|  | 
 | |||
|  | = 2 The corresponding values of x for the first five natural numbers are shown below. | |||
|  | 
 | |||
|  | xAF(x) √2−11 1/22 (√13−2)/33 (√89−5)/84 (√34−3)/55 | |||
|  | 
 | |||
|  | We shall call AF(x) a golden nugget if x is rational, because they become increasingly rarer; for example, the 10th golden nugget is 74049690. Find the 15th golden nugget. | |||
|  | 
 | |||
|  | # --hints--
 | |||
|  | 
 | |||
|  | `euler137()` should return 1120149658760. | |||
|  | 
 | |||
|  | ```js | |||
|  | assert.strictEqual(euler137(), 1120149658760); | |||
|  | ``` | |||
|  | 
 | |||
|  | # --seed--
 | |||
|  | 
 | |||
|  | ## --seed-contents--
 | |||
|  | 
 | |||
|  | ```js | |||
|  | function euler137() { | |||
|  | 
 | |||
|  |   return true; | |||
|  | } | |||
|  | 
 | |||
|  | euler137(); | |||
|  | ``` | |||
|  | 
 | |||
|  | # --solutions--
 | |||
|  | 
 | |||
|  | ```js | |||
|  | // solution required | |||
|  | ``` |