53 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			53 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | |||
|  | id: 5900f4021000cf542c50ff13 | |||
|  | title: 'Problem 149: Searching for a maximum-sum subsequence' | |||
|  | challengeType: 5 | |||
|  | forumTopicId: 301778 | |||
|  | dashedName: problem-149-searching-for-a-maximum-sum-subsequence | |||
|  | --- | |||
|  | 
 | |||
|  | # --description--
 | |||
|  | 
 | |||
|  | Looking at the table below, it is easy to verify that the maximum possible sum of adjacent numbers in any direction (horizontal, vertical, diagonal or anti-diagonal) is 16 (= 8 + 7 + 1). | |||
|  | 
 | |||
|  | −25329−6513273−18−4 8 | |||
|  | 
 | |||
|  | Now, let us repeat the search, but on a much larger scale: | |||
|  | 
 | |||
|  | First, generate four million pseudo-random numbers using a specific form of what is known as a "Lagged Fibonacci Generator": | |||
|  | 
 | |||
|  | For 1 ≤ k ≤ 55, sk = \[100003 − 200003k + 300007k3] (modulo 1000000) − 500000. For 56 ≤ k ≤ 4000000, sk = \[sk−24 + sk−55 + 1000000] (modulo 1000000) − 500000. | |||
|  | 
 | |||
|  | Thus, s10 = −393027 and s100 = 86613. | |||
|  | 
 | |||
|  | The terms of s are then arranged in a 2000×2000 table, using the first 2000 numbers to fill the first row (sequentially), the next 2000 numbers to fill the second row, and so on. | |||
|  | 
 | |||
|  | Finally, find the greatest sum of (any number of) adjacent entries in any direction (horizontal, vertical, diagonal or anti-diagonal). | |||
|  | 
 | |||
|  | # --hints--
 | |||
|  | 
 | |||
|  | `euler149()` should return 52852124. | |||
|  | 
 | |||
|  | ```js | |||
|  | assert.strictEqual(euler149(), 52852124); | |||
|  | ``` | |||
|  | 
 | |||
|  | # --seed--
 | |||
|  | 
 | |||
|  | ## --seed-contents--
 | |||
|  | 
 | |||
|  | ```js | |||
|  | function euler149() { | |||
|  | 
 | |||
|  |   return true; | |||
|  | } | |||
|  | 
 | |||
|  | euler149(); | |||
|  | ``` | |||
|  | 
 | |||
|  | # --solutions--
 | |||
|  | 
 | |||
|  | ```js | |||
|  | // solution required | |||
|  | ``` |