59 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			59 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| 
								 | 
							
								---
							 | 
						||
| 
								 | 
							
								id: 5900f45b1000cf542c50ff6d
							 | 
						||
| 
								 | 
							
								title: 'Problem 238: Infinite string tour'
							 | 
						||
| 
								 | 
							
								challengeType: 5
							 | 
						||
| 
								 | 
							
								forumTopicId: 301883
							 | 
						||
| 
								 | 
							
								dashedName: problem-238-infinite-string-tour
							 | 
						||
| 
								 | 
							
								---
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --description--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Create a sequence of numbers using the "Blum Blum Shub" pseudo-random number generator:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								s0 = 14025256 sn+1 = sn2 mod 20300713
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Concatenate these numbers s0s1s2… to create a string w of infinite length. Then, w = 14025256741014958470038053646…
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								For a positive integer k, if no substring of w exists with a sum of digits equal to k, p(k) is defined to be zero. If at least one substring of w exists with a sum of digits equal to k, we define p(k) = z, where z is the starting position of the earliest such substring.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								For instance:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The substrings 1, 14, 1402, … with respective sums of digits equal to 1, 5, 7, … start at position 1, hence p(1) = p(5) = p(7) = … = 1.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The substrings 4, 402, 4025, … with respective sums of digits equal to 4, 6, 11, … start at position 2, hence p(4) = p(6) = p(11) = … = 2.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The substrings 02, 0252, … with respective sums of digits equal to 2, 9, … start at position 3, hence p(2) = p(9) = … = 3.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Note that substring 025 starting at position 3, has a sum of digits equal to 7, but there was an earlier substring (starting at position 1) with a sum of digits equal to 7, so p(7) = 1, not 3.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								We can verify that, for 0 < k ≤ 103, ∑ p(k) = 4742.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Find ∑ p(k), for 0 < k ≤ 2·1015.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --hints--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								`euler238()` should return 9922545104535660.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								assert.strictEqual(euler238(), 9922545104535660);
							 | 
						||
| 
								 | 
							
								```
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --seed--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								## --seed-contents--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								function euler238() {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  return true;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								euler238();
							 | 
						||
| 
								 | 
							
								```
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --solutions--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								// solution required
							 | 
						||
| 
								 | 
							
								```
							 |