55 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			55 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | ||
|  | id: 5900f4751000cf542c50ff87 | ||
|  | title: 'Problem 264: Triangle Centres' | ||
|  | challengeType: 5 | ||
|  | forumTopicId: 301913 | ||
|  | dashedName: problem-264-triangle-centres | ||
|  | --- | ||
|  | 
 | ||
|  | # --description--
 | ||
|  | 
 | ||
|  | Consider all the triangles having: | ||
|  | 
 | ||
|  | All their vertices on lattice points. | ||
|  | 
 | ||
|  | Circumcentre at the origin O. | ||
|  | 
 | ||
|  | Orthocentre at the point H(5, 0). | ||
|  | 
 | ||
|  | There are nine such triangles having a perimeter ≤ 50. | ||
|  | 
 | ||
|  | Listed and shown in ascending order of their perimeter, they are: | ||
|  | 
 | ||
|  | A(-4, 3), B(5, 0), C(4, -3) A(4, 3), B(5, 0), C(-4, -3) A(-3, 4), B(5, 0), C(3, -4) A(3, 4), B(5, 0), C(-3, -4) A(0, 5), B(5, 0), C(0, -5) A(1, 8), B(8, -1), C(-4, -7) A(8, 1), B(1, -8), C(-4, 7) A(2, 9), B(9, -2), C(-6, -7) A(9, 2), B(2, -9), C(-6, 7) | ||
|  | 
 | ||
|  | The sum of their perimeters, rounded to four decimal places, is 291.0089. | ||
|  | 
 | ||
|  | Find all such triangles with a perimeter ≤ 105. Enter as your answer the sum of their perimeters rounded to four decimal places. | ||
|  | 
 | ||
|  | # --hints--
 | ||
|  | 
 | ||
|  | `euler264()` should return 2816417.1055. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(euler264(), 2816417.1055); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --seed--
 | ||
|  | 
 | ||
|  | ## --seed-contents--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | function euler264() { | ||
|  | 
 | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | euler264(); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --solutions--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | // solution required | ||
|  | ``` |