57 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			57 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | ||
|  | id: 5900f4931000cf542c50ffa6 | ||
|  | title: 'Problem 295: Lenticular holes' | ||
|  | challengeType: 5 | ||
|  | forumTopicId: 301947 | ||
|  | dashedName: problem-295-lenticular-holes | ||
|  | --- | ||
|  | 
 | ||
|  | # --description--
 | ||
|  | 
 | ||
|  | We call the convex area enclosed by two circles a lenticular hole if: | ||
|  | 
 | ||
|  | The centres of both circles are on lattice points. | ||
|  | 
 | ||
|  | The two circles intersect at two distinct lattice points. | ||
|  | 
 | ||
|  | The interior of the convex area enclosed by both circles does not contain any lattice points. | ||
|  | 
 | ||
|  | Consider the circles: C0: x2+y2=25 C1: (x+4)2+(y-4)2=1 C2: (x-12)2+(y-4)2=65 | ||
|  | 
 | ||
|  | The circles C0, C1 and C2 are drawn in the picture below. | ||
|  | 
 | ||
|  | C0 and C1 form a lenticular hole, as well as C0 and C2. | ||
|  | 
 | ||
|  | We call an ordered pair of positive real numbers (r1, r2) a lenticular pair if there exist two circles with radii r1 and r2 that form a lenticular hole. We can verify that (1, 5) and (5, √65) are the lenticular pairs of the example above. | ||
|  | 
 | ||
|  | Let L(N) be the number of distinct lenticular pairs (r1, r2) for which 0 < r1 ≤ r2 ≤ N. We can verify that L(10) = 30 and L(100) = 3442. | ||
|  | 
 | ||
|  | Find L(100 000). | ||
|  | 
 | ||
|  | # --hints--
 | ||
|  | 
 | ||
|  | `euler295()` should return 4884650818. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(euler295(), 4884650818); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --seed--
 | ||
|  | 
 | ||
|  | ## --seed-contents--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | function euler295() { | ||
|  | 
 | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | euler295(); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --solutions--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | // solution required | ||
|  | ``` |