49 lines
		
	
	
		
			1018 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			49 lines
		
	
	
		
			1018 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | ||
|  | id: 5900f5181000cf542c51002a | ||
|  | title: 'Problem 427: n-sequences' | ||
|  | challengeType: 5 | ||
|  | forumTopicId: 302097 | ||
|  | dashedName: problem-427-n-sequences | ||
|  | --- | ||
|  | 
 | ||
|  | # --description--
 | ||
|  | 
 | ||
|  | A sequence of integers S = {si} is called an n-sequence if it has n elements and each element si satisfies 1 ≤ si ≤ n. Thus there are nn distinct n-sequences in total. | ||
|  | 
 | ||
|  | For example, the sequence S = {1, 5, 5, 10, 7, 7, 7, 2, 3, 7} is a 10-sequence. | ||
|  | 
 | ||
|  | For any sequence S, let L(S) be the length of the longest contiguous subsequence of S with the same value. For example, for the given sequence S above, L(S) = 3, because of the three consecutive 7's. | ||
|  | 
 | ||
|  | Let f(n) = ∑ L(S) for all n-sequences S. | ||
|  | 
 | ||
|  | For example, f(3) = 45, f(7) = 1403689 and f(11) = 481496895121. | ||
|  | 
 | ||
|  | Find f(7 500 000) mod 1 000 000 009. | ||
|  | 
 | ||
|  | # --hints--
 | ||
|  | 
 | ||
|  | `euler427()` should return 97138867. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(euler427(), 97138867); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --seed--
 | ||
|  | 
 | ||
|  | ## --seed-contents--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | function euler427() { | ||
|  | 
 | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | euler427(); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --solutions--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | // solution required | ||
|  | ``` |