127 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			127 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | ||
|  | id: 5900f3971000cf542c50feaa | ||
|  | title: 'Problem 43: Sub-string divisibility' | ||
|  | challengeType: 5 | ||
|  | forumTopicId: 302100 | ||
|  | dashedName: problem-43-sub-string-divisibility | ||
|  | --- | ||
|  | 
 | ||
|  | # --description--
 | ||
|  | 
 | ||
|  | The number, 1406357289, is a 0 to 9 pandigital number because it is made up of each of the digits 0 to 9 in some order, but it also has a rather interesting sub-string divisibility property. | ||
|  | 
 | ||
|  | Let $d_1$ be the $1^{st}$ digit, $d_2$ be the $2^{nd}$ digit, and so on. In this way, we note the following: | ||
|  | 
 | ||
|  | - ${d_2}{d_3}{d_4} = 406$ is divisible by 2 | ||
|  | - ${d_3}{d_4}{d_5} = 063$ is divisible by 3 | ||
|  | - ${d_4}{d_5}{d_6} = 635$ is divisible by 5 | ||
|  | - ${d_5}{d_6}{d_7} = 357$ is divisible by 7 | ||
|  | - ${d_6}{d_7}{d_8} = 572$ is divisible by 11 | ||
|  | - ${d_7}{d_8}{d_9} = 728$ is divisible by 13 | ||
|  | - ${d_8}{d_9}{d_{10}} = 289$ is divisible by 17 | ||
|  | 
 | ||
|  | Find the sum of all 0 to `n` pandigital numbers with sub-strings fulfilling `n - 2` of these divisibility properties. | ||
|  | 
 | ||
|  | **Note:** Pandigital numbers starting with `0` are to be considered in the result. | ||
|  | 
 | ||
|  | # --hints--
 | ||
|  | 
 | ||
|  | `substringDivisibility(5)` should return a number. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert(typeof substringDivisibility(5) === 'number'); | ||
|  | ``` | ||
|  | 
 | ||
|  | `substringDivisibility(5)` should return `12444480`. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(substringDivisibility(5), 12444480) | ||
|  | ``` | ||
|  | 
 | ||
|  | `substringDivisibility(7)` should return `1099210170`. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(substringDivisibility(7), 1099210170) | ||
|  | ``` | ||
|  | 
 | ||
|  | `substringDivisibility(8)` should return `1113342912`. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(substringDivisibility(8), 1113342912) | ||
|  | ``` | ||
|  | 
 | ||
|  | `substringDivisibility(9)` should return `16695334890`. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(substringDivisibility(9), 16695334890) | ||
|  | ``` | ||
|  | 
 | ||
|  | # --seed--
 | ||
|  | 
 | ||
|  | ## --seed-contents--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | function substringDivisibility(n) { | ||
|  | 
 | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | substringDivisibility(5); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --solutions--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | function substringDivisibility(n) { | ||
|  |   function isSubDivisable(digits) { | ||
|  |     const factors = [2, 3, 5, 7, 11, 13, 17]; | ||
|  | 
 | ||
|  |     for (let i = 1; i < digits.length - 2; i++) { | ||
|  |       const subNumber = digits[i] * 100 + digits[i + 1] * 10 + digits[i + 2]; | ||
|  |       if (subNumber % factors[i - 1] !== 0) { | ||
|  |         return false; | ||
|  |       } | ||
|  |     } | ||
|  |     return true; | ||
|  |   } | ||
|  | 
 | ||
|  |   function heapsPermutations(k, digits, conditionCheck, results) { | ||
|  |     if (k === 1) { | ||
|  |       if (conditionCheck(digits)) { | ||
|  |         const number = parseInt(digits.join(''), 10); | ||
|  |         results.push(number); | ||
|  |       } | ||
|  |       return; | ||
|  |     } | ||
|  | 
 | ||
|  |     heapsPermutations(k - 1, digits, conditionCheck, results); | ||
|  | 
 | ||
|  |     for (let i = 0; i < k - 1; i++) { | ||
|  |       if (k % 2 === 0) { | ||
|  |         [digits[i], digits[k - 1]] = [digits[k - 1], digits[i]]; | ||
|  |       } else { | ||
|  |         [digits[0], digits[k - 1]] = [digits[k - 1], digits[0]]; | ||
|  |       } | ||
|  |       heapsPermutations(k - 1, digits, conditionCheck, results); | ||
|  |     } | ||
|  |     return; | ||
|  |   } | ||
|  | 
 | ||
|  |   const allowedDigits = [...new Array(n + 1).keys()]; | ||
|  |   const divisablePandigitals = []; | ||
|  |   heapsPermutations( | ||
|  |     allowedDigits.length, | ||
|  |     allowedDigits, | ||
|  |     isSubDivisable, | ||
|  |     divisablePandigitals | ||
|  |   ); | ||
|  | 
 | ||
|  |   let sum = 0; | ||
|  |   for (let i = 0; i < divisablePandigitals.length; i++) { | ||
|  |     sum += divisablePandigitals[i]; | ||
|  |   } | ||
|  | 
 | ||
|  |   return sum; | ||
|  | } | ||
|  | ``` |