45 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			45 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | ||
|  | id: 5900f5231000cf542c510034 | ||
|  | title: 'Problem 438: Integer part of polynomial equation''s solutions' | ||
|  | challengeType: 5 | ||
|  | forumTopicId: 302109 | ||
|  | dashedName: problem-438-integer-part-of-polynomial-equations-solutions | ||
|  | --- | ||
|  | 
 | ||
|  | # --description--
 | ||
|  | 
 | ||
|  | For an n-tuple of integers t = (a1, ..., an), let (x1, ..., xn) be the solutions of the polynomial equation xn + a1xn-1 + a2xn-2 + ... + an-1x + an = 0. | ||
|  | 
 | ||
|  | Consider the following two conditions: x1, ..., xn are all real. If x1, ..., xn are sorted, ⌊xi⌋ = i for 1 ≤ i ≤ n. (⌊·⌋: floor function.) | ||
|  | 
 | ||
|  | In the case of n = 4, there are 12 n-tuples of integers which satisfy both conditions. We define S(t) as the sum of the absolute values of the integers in t. For n = 4 we can verify that ∑S(t) = 2087 for all n-tuples t which satisfy both conditions. | ||
|  | 
 | ||
|  | Find ∑S(t) for n = 7. | ||
|  | 
 | ||
|  | # --hints--
 | ||
|  | 
 | ||
|  | `euler438()` should return 2046409616809. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(euler438(), 2046409616809); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --seed--
 | ||
|  | 
 | ||
|  | ## --seed-contents--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | function euler438() { | ||
|  | 
 | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | euler438(); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --solutions--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | // solution required | ||
|  | ``` |