111 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			111 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| 
								 | 
							
								---
							 | 
						||
| 
								 | 
							
								id: 5900f3b11000cf542c50fec4
							 | 
						||
| 
								 | 
							
								title: 'Problem 69: Totient maximum'
							 | 
						||
| 
								 | 
							
								challengeType: 5
							 | 
						||
| 
								 | 
							
								forumTopicId: 302181
							 | 
						||
| 
								 | 
							
								dashedName: problem-69-totient-maximum
							 | 
						||
| 
								 | 
							
								---
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --description--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Euler's Totient function, ${\phi}(n)$ (sometimes called the phi function), is used to determine the number of numbers less than `n` which are relatively prime to `n`. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, ${\phi}(9) = 6$.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<div style='margin-left: 4em;'>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								| $n$ | $\text{Relatively Prime}$ | $\displaystyle{\phi}(n)$ | $\displaystyle\frac{n}{{\phi}(n)}$ |
							 | 
						||
| 
								 | 
							
								| --- | ------------------------- | ------------------------ | ---------------------------------- |
							 | 
						||
| 
								 | 
							
								| 2   | 1                         | 1                        | 2                                  |
							 | 
						||
| 
								 | 
							
								| 3   | 1,2                       | 2                        | 1.5                                |
							 | 
						||
| 
								 | 
							
								| 4   | 1,3                       | 2                        | 2                                  |
							 | 
						||
| 
								 | 
							
								| 5   | 1,2,3,4                   | 4                        | 1.25                               |
							 | 
						||
| 
								 | 
							
								| 6   | 1,5                       | 2                        | 3                                  |
							 | 
						||
| 
								 | 
							
								| 7   | 1,2,3,4,5,6               | 6                        | 1.1666...                          |
							 | 
						||
| 
								 | 
							
								| 8   | 1,3,5,7                   | 4                        | 2                                  |
							 | 
						||
| 
								 | 
							
								| 9   | 1,2,4,5,7,8               | 6                        | 1.5                                |
							 | 
						||
| 
								 | 
							
								| 10  | 1,3,7,9                   | 4                        | 2.5                                |
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								</div>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								It can be seen that `n` = 6 produces a maximum $\displaystyle\frac{n}{{\phi}(n)}$ for `n` ≤ 10.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Find the value of `n` ≤ `limit` for which $\displaystyle\frac{n}{{\phi(n)}}$ is a maximum.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --hints--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								`totientMaximum(10)` should return a number.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								assert(typeof totientMaximum(10) === 'number');
							 | 
						||
| 
								 | 
							
								```
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								`totientMaximum(10)` should return `6`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								assert.strictEqual(totientMaximum(10), 6);
							 | 
						||
| 
								 | 
							
								```
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								`totientMaximum(10000)` should return `2310`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								assert.strictEqual(totientMaximum(10000), 2310);
							 | 
						||
| 
								 | 
							
								```
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								`totientMaximum(500000)` should return `30030`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								assert.strictEqual(totientMaximum(500000), 30030);
							 | 
						||
| 
								 | 
							
								```
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								`totientMaximum(1000000)` should return `510510`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								assert.strictEqual(totientMaximum(1000000), 510510);
							 | 
						||
| 
								 | 
							
								```
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --seed--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								## --seed-contents--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								function totientMaximum(limit) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  return true;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								totientMaximum(10);
							 | 
						||
| 
								 | 
							
								```
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --solutions--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								function totientMaximum(limit) {
							 | 
						||
| 
								 | 
							
								  function getSievePrimes(max) {
							 | 
						||
| 
								 | 
							
								    const primesMap = new Array(max).fill(true);
							 | 
						||
| 
								 | 
							
								    primesMap[0] = false;
							 | 
						||
| 
								 | 
							
								    primesMap[1] = false;
							 | 
						||
| 
								 | 
							
								    const primes = [];
							 | 
						||
| 
								 | 
							
								    for (let i = 2; i < max; i = i + 2) {
							 | 
						||
| 
								 | 
							
								      if (primesMap[i]) {
							 | 
						||
| 
								 | 
							
								        primes.push(i);
							 | 
						||
| 
								 | 
							
								        for (let j = i * i; j < max; j = j + i) {
							 | 
						||
| 
								 | 
							
								          primesMap[j] = false;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      if (i === 2) {
							 | 
						||
| 
								 | 
							
								        i = 1;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    return primes;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  const MAX_PRIME = 50;
							 | 
						||
| 
								 | 
							
								  const primes = getSievePrimes(MAX_PRIME);
							 | 
						||
| 
								 | 
							
								  let result = 1;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  for (let i = 0; result * primes[i] < limit; i++) {
							 | 
						||
| 
								 | 
							
								    result *= primes[i];
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  return result;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								```
							 |