119 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			119 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | ||
|  | id: 5900f3b21000cf542c50fec5 | ||
|  | title: 'Problem 70: Totient permutation' | ||
|  | challengeType: 5 | ||
|  | forumTopicId: 302183 | ||
|  | dashedName: problem-70-totient-permutation | ||
|  | --- | ||
|  | 
 | ||
|  | # --description--
 | ||
|  | 
 | ||
|  | Euler's Totient function, ${\phi}(n)$ (sometimes called the phi function), is used to determine the number of positive numbers less than or equal to `n` which are relatively prime to `n`. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, ${\phi}(9) = 6$. The number 1 is considered to be relatively prime to every positive number, so ${\phi}(1) = 1$. | ||
|  | 
 | ||
|  | Interestingly, ${\phi}(87109) = 79180$, and it can be seen that 87109 is a permutation of 79180. | ||
|  | 
 | ||
|  | Find the value of `n`, 1 < `n` < `limit`, for which ${\phi}(n)$ is a permutation of `n` and the ratio $\displaystyle\frac{n}{{\phi}(n)}$ produces a minimum. | ||
|  | 
 | ||
|  | # --hints--
 | ||
|  | 
 | ||
|  | `totientPermutation(10000)` should return a number. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert(typeof totientPermutation(10000) === 'number'); | ||
|  | ``` | ||
|  | 
 | ||
|  | `totientPermutation(10000)` should return `4435`. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(totientPermutation(10000), 4435); | ||
|  | ``` | ||
|  | 
 | ||
|  | `totientPermutation(100000)` should return `75841`. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(totientPermutation(100000), 75841); | ||
|  | ``` | ||
|  | 
 | ||
|  | `totientPermutation(500000)` should return `474883`. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(totientPermutation(500000), 474883); | ||
|  | ``` | ||
|  | 
 | ||
|  | `totientPermutation(10000000)` should return `8319823`. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(totientPermutation(10000000), 8319823); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --seed--
 | ||
|  | 
 | ||
|  | ## --seed-contents--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | function totientPermutation(limit) { | ||
|  | 
 | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | totientPermutation(10000); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --solutions--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | function totientPermutation(limit) { | ||
|  |   function getSievePrimes(max) { | ||
|  |     const primes = []; | ||
|  |     const primesMap = new Array(max).fill(true); | ||
|  |     primesMap[0] = false; | ||
|  |     primesMap[1] = false; | ||
|  | 
 | ||
|  |     for (let i = 2; i < max; i += 2) { | ||
|  |       if (primesMap[i]) { | ||
|  |         primes.push(i); | ||
|  |         for (let j = i * i; j < max; j += i) { | ||
|  |           primesMap[j] = false; | ||
|  |         } | ||
|  |       } | ||
|  |       if (i === 2) { | ||
|  |         i = 1; | ||
|  |       } | ||
|  |     } | ||
|  |     return primes; | ||
|  |   } | ||
|  | 
 | ||
|  |   function sortDigits(number) { | ||
|  |     return number.toString().split('').sort().join(''); | ||
|  |   } | ||
|  | 
 | ||
|  |   function isPermutation(numberA, numberB) { | ||
|  |     return sortDigits(numberA) === sortDigits(numberB); | ||
|  |   } | ||
|  | 
 | ||
|  |   const MAX_PRIME = 4000; | ||
|  |   const primes = getSievePrimes(MAX_PRIME); | ||
|  | 
 | ||
|  |   let nValue = 1; | ||
|  |   let minRatio = Infinity; | ||
|  | 
 | ||
|  |   for (let i = 1; i < primes.length; i++) { | ||
|  |     for (let j = i + 1; j < primes.length; j++) { | ||
|  |       const num = primes[i] * primes[j]; | ||
|  |       if (num > limit) { | ||
|  |         break; | ||
|  |       } | ||
|  | 
 | ||
|  |       const phi = (primes[i] - 1) * (primes[j] - 1); | ||
|  |       const ratio = num / phi; | ||
|  | 
 | ||
|  |       if (minRatio > ratio && isPermutation(num, phi)) { | ||
|  |         nValue = num; | ||
|  |         minRatio = ratio; | ||
|  |       } | ||
|  |     } | ||
|  |   } | ||
|  |   return nValue; | ||
|  | } | ||
|  | ``` |