| 
									
										
										
										
											2021-06-15 00:49:18 -07:00
										 |  |  |  | --- | 
					
						
							|  |  |  |  | id: 5900f4b71000cf542c50ffc9 | 
					
						
							| 
									
										
										
										
											2021-11-19 10:31:54 -08:00
										 |  |  |  | title: 'Problema 330: Números de Euler' | 
					
						
							| 
									
										
										
										
											2021-06-15 00:49:18 -07:00
										 |  |  |  | challengeType: 5 | 
					
						
							|  |  |  |  | forumTopicId: 301988 | 
					
						
							|  |  |  |  | dashedName: problem-330-eulers-number | 
					
						
							|  |  |  |  | --- | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | # --description--
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-11-19 10:31:54 -08:00
										 |  |  |  | Uma sequência infinita de números reais $a(n)$ é definida para todos os números inteiros $n$ da seguinte forma: | 
					
						
							| 
									
										
										
										
											2021-06-15 00:49:18 -07:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-11-19 10:31:54 -08:00
										 |  |  |  | $$ a(n) = \begin{cases} 1                                                       & n < 0 \\\\ \displaystyle \sum_{i = 1}^{\infty} \frac{a(n - 1)}{i!} & n \ge 0 \end{cases} $$ | 
					
						
							| 
									
										
										
										
											2021-06-15 00:49:18 -07:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-11-19 10:31:54 -08:00
										 |  |  |  | Por exemplo: | 
					
						
							| 
									
										
										
										
											2021-06-15 00:49:18 -07:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-11-19 10:31:54 -08:00
										 |  |  |  | $$\begin{align} & a(0) = \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \ldots = e − 1 \\\\ & a(1) = \frac{e − 1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \ldots = 2e − 3 \\\\ & a(2) = \frac{2e − 3}{1!} + \frac{e − 1}{2!} + \frac{1}{3!} + \ldots = \frac{7}{2} e − 6 \end{align}$$ | 
					
						
							| 
									
										
										
										
											2021-06-15 00:49:18 -07:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-11-19 10:31:54 -08:00
										 |  |  |  | com $e = 2.7182818\ldots$ sendo a constante de Euler. | 
					
						
							| 
									
										
										
										
											2021-06-15 00:49:18 -07:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-11-19 10:31:54 -08:00
										 |  |  |  | Pode-se mostrar que $a(n)$ está no formato $\displaystyle\frac{A(n)e + B(n)}{n!}$ para os números inteiros $A(n)$ e $B(n)$. | 
					
						
							| 
									
										
										
										
											2021-06-15 00:49:18 -07:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-11-19 10:31:54 -08:00
										 |  |  |  | Por exemplo, $\displaystyle a(10) = \frac{328161643e − 652694486}{10!}$. | 
					
						
							| 
									
										
										
										
											2021-06-15 00:49:18 -07:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-11-19 10:31:54 -08:00
										 |  |  |  | Encontre $A({10}^9)$ + $B({10}^9)$ e dê sua resposta $\bmod 77\\,777\\,777$. | 
					
						
							| 
									
										
										
										
											2021-06-15 00:49:18 -07:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | # --hints--
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-11-19 10:31:54 -08:00
										 |  |  |  | `eulersNumber()` deve retornar `15955822`. | 
					
						
							| 
									
										
										
										
											2021-06-15 00:49:18 -07:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | ```js | 
					
						
							| 
									
										
										
										
											2021-11-19 10:31:54 -08:00
										 |  |  |  | assert.strictEqual(eulersNumber(), 15955822); | 
					
						
							| 
									
										
										
										
											2021-06-15 00:49:18 -07:00
										 |  |  |  | ``` | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | # --seed--
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ## --seed-contents--
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ```js | 
					
						
							| 
									
										
										
										
											2021-11-19 10:31:54 -08:00
										 |  |  |  | function eulersNumber() { | 
					
						
							| 
									
										
										
										
											2021-06-15 00:49:18 -07:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |   return true; | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-11-19 10:31:54 -08:00
										 |  |  |  | eulersNumber(); | 
					
						
							| 
									
										
										
										
											2021-06-15 00:49:18 -07:00
										 |  |  |  | ``` | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | # --solutions--
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ```js | 
					
						
							|  |  |  |  | // solution required | 
					
						
							|  |  |  |  | ``` |