55 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			55 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| 
								 | 
							
								---
							 | 
						||
| 
								 | 
							
								id: 5900f4751000cf542c50ff87
							 | 
						||
| 
								 | 
							
								title: 'Problem 264: Triangle Centres'
							 | 
						||
| 
								 | 
							
								challengeType: 5
							 | 
						||
| 
								 | 
							
								forumTopicId: 301913
							 | 
						||
| 
								 | 
							
								dashedName: problem-264-triangle-centres
							 | 
						||
| 
								 | 
							
								---
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --description--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Consider all the triangles having:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								All their vertices on lattice points.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Circumcentre at the origin O.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Orthocentre at the point H(5, 0).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								There are nine such triangles having a perimeter ≤ 50.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Listed and shown in ascending order of their perimeter, they are:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								A(-4, 3), B(5, 0), C(4, -3) A(4, 3), B(5, 0), C(-4, -3) A(-3, 4), B(5, 0), C(3, -4) A(3, 4), B(5, 0), C(-3, -4) A(0, 5), B(5, 0), C(0, -5) A(1, 8), B(8, -1), C(-4, -7) A(8, 1), B(1, -8), C(-4, 7) A(2, 9), B(9, -2), C(-6, -7) A(9, 2), B(2, -9), C(-6, 7)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The sum of their perimeters, rounded to four decimal places, is 291.0089.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Find all such triangles with a perimeter ≤ 105. Enter as your answer the sum of their perimeters rounded to four decimal places.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --hints--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								`euler264()` should return 2816417.1055.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								assert.strictEqual(euler264(), 2816417.1055);
							 | 
						||
| 
								 | 
							
								```
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --seed--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								## --seed-contents--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								function euler264() {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  return true;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								euler264();
							 | 
						||
| 
								 | 
							
								```
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --solutions--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								// solution required
							 | 
						||
| 
								 | 
							
								```
							 |