45 lines
		
	
	
		
			821 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			45 lines
		
	
	
		
			821 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | ||
|  | id: 5900f5201000cf542c510032 | ||
|  | title: 'Problem 435: Polynomials of Fibonacci numbers' | ||
|  | challengeType: 5 | ||
|  | forumTopicId: 302106 | ||
|  | dashedName: problem-435-polynomials-of-fibonacci-numbers | ||
|  | --- | ||
|  | 
 | ||
|  | # --description--
 | ||
|  | 
 | ||
|  | The Fibonacci numbers {fn, n ≥ 0} are defined recursively as fn = fn-1 + fn-2 with base cases f0 = 0 and f1 = 1. | ||
|  | 
 | ||
|  | Define the polynomials {Fn, n ≥ 0} as Fn(x) = ∑fixi for 0 ≤ i ≤ n. | ||
|  | 
 | ||
|  | For example, F7(x) = x + x2 + 2x3 + 3x4 + 5x5 + 8x6 + 13x7, and F7(11) = 268357683. | ||
|  | 
 | ||
|  | Let n = 1015. Find the sum \[∑0≤x≤100 Fn(x)] mod 1307674368000 (= 15!). | ||
|  | 
 | ||
|  | # --hints--
 | ||
|  | 
 | ||
|  | `euler435()` should return 252541322550. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(euler435(), 252541322550); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --seed--
 | ||
|  | 
 | ||
|  | ## --seed-contents--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | function euler435() { | ||
|  | 
 | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | euler435(); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --solutions--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | // solution required | ||
|  | ``` |