Euler's Totient function, φ(`n`) \[sometimes called the phi function], is used to determine the number of positive numbers less than or equal to `n` which are relatively prime to `n`. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, φ(9)=6. The number 1 is considered to be relatively prime to every positive number, so φ(1)=1.
Interestingly, φ(87109)=79180, and it can be seen that 87109 is a permutation of 79180.
Find the value of `n`, 1 <`n`< 10<sup>7</sup>, for which φ(`n`) is a permutation of `n` and the ratio `n`/φ(`n`) produces a minimum.