56 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			56 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| 
								 | 
							
								---
							 | 
						|||
| 
								 | 
							
								id: 5900f4f41000cf542c510007
							 | 
						|||
| 
								 | 
							
								challengeType: 5
							 | 
						|||
| 
								 | 
							
								title: 'Problem 392: Enmeshed unit circle'
							 | 
						|||
| 
								 | 
							
								videoUrl: ''
							 | 
						|||
| 
								 | 
							
								localeTitle: 问题392:陷入困境的单位圆
							 | 
						|||
| 
								 | 
							
								---
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								## Description
							 | 
						|||
| 
								 | 
							
								<section id="description">直线网格是正交网格,其中网格线之间的间距不必是等距的。这种网格的一个例子是对数图纸。 <p>考虑笛卡尔坐标系中的直线网格,具有以下属性:网格线平行于笛卡尔坐标系的轴。有N + 2个垂直网格线和N + 2个水平网格线。因此存在(N + 1)x(N + 1)个矩形单元。两个外部垂直网格线的方程是x = -1且x = 1.两个外部水平网格线的方程是y = -1和y如果它们与单位圆重叠,则网格单元为红色,否则为黑色。对于这个问题,我们希望您找到剩余的N个内部水平线和N个内部垂直网格线的位置,以便红色占据的区域细胞最小化。 </p><p>例如,这里是N = 10的解决方案的图片: </p><p>红色单元占N = 10的区域舍入到小数点后面的10位是3.3469640797。 </p><p>找到N = 400的位置。将红色单元占用的区域四舍五入到小数点后面的10位数作为答案。 </p></section>
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								## Instructions
							 | 
						|||
| 
								 | 
							
								<section id="instructions">
							 | 
						|||
| 
								 | 
							
								</section>
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								## Tests
							 | 
						|||
| 
								 | 
							
								<section id='tests'>
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								```yml
							 | 
						|||
| 
								 | 
							
								tests:
							 | 
						|||
| 
								 | 
							
								  - text: <code>euler392()</code>应返回3.1486734435。
							 | 
						|||
| 
								 | 
							
								    testString: 'assert.strictEqual(euler392(), 3.1486734435, "<code>euler392()</code> should return 3.1486734435.");'
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								```
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								</section>
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								## Challenge Seed
							 | 
						|||
| 
								 | 
							
								<section id='challengeSeed'>
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								<div id='js-seed'>
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								```js
							 | 
						|||
| 
								 | 
							
								function euler392() {
							 | 
						|||
| 
								 | 
							
								  // Good luck!
							 | 
						|||
| 
								 | 
							
								  return true;
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								euler392();
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								```
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								</div>
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								</section>
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								## Solution
							 | 
						|||
| 
								 | 
							
								<section id='solution'>
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								```js
							 | 
						|||
| 
								 | 
							
								// solution required
							 | 
						|||
| 
								 | 
							
								```
							 | 
						|||
| 
								 | 
							
								</section>
							 |