53 lines
800 B
Markdown
53 lines
800 B
Markdown
![]() |
---
|
||
|
id: 5e8f2f13c4cdbe86b5c72d98
|
||
|
title: Creating a Convolutional Neural Network
|
||
|
challengeType: 11
|
||
|
videoId: kfv0K8MtkIc
|
||
|
dashedName: creating-a-convolutional-neural-network
|
||
|
---
|
||
|
|
||
|
# --question--
|
||
|
|
||
|
## --text--
|
||
|
|
||
|
Fill in the blanks below to complete the architecture for a convolutional neural network:
|
||
|
|
||
|
```py
|
||
|
model = models.__A__()
|
||
|
model.add(layers.__B__(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
|
||
|
model.add(layers.__C__(2, 2))
|
||
|
model.add(layers.__B__(64, (3, 3), activation='relu'))
|
||
|
model.add(layers.__C__(2, 2))
|
||
|
model.add(layers.__B__(32, (3, 3), activation='relu'))
|
||
|
model.add(layers.__C__(2, 2))
|
||
|
```
|
||
|
|
||
|
## --answers--
|
||
|
|
||
|
A: `Sequential`
|
||
|
|
||
|
B: `add`
|
||
|
|
||
|
C: `Wrapper`
|
||
|
|
||
|
---
|
||
|
|
||
|
A: `keras`
|
||
|
|
||
|
B: `Cropping2D`
|
||
|
|
||
|
C: `AlphaDropout`
|
||
|
|
||
|
---
|
||
|
|
||
|
A: `Sequential`
|
||
|
|
||
|
B: `Conv2D`
|
||
|
|
||
|
C: `MaxPooling2D`
|
||
|
|
||
|
## --video-solution--
|
||
|
|
||
|
3
|
||
|
|