48 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			48 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|  | --- | |||
|  | title: Floyd Warshall Algorithm | |||
|  | localeTitle: Floyd Warshall算法 | |||
|  | --- | |||
|  | ## Floyd Warshall算法
 | |||
|  | 
 | |||
|  | Floyd Warshall算法是一种很好的算法,用于查找图中所有顶点之间的最短距离。它具有非常简洁的算法和O(V ^ 3)时间复杂度(其中V是顶点数)。它可以与负权重一起使用,但图表中不得出现负权重循环。 | |||
|  | 
 | |||
|  | ### 评估
 | |||
|  | 
 | |||
|  | 空间复杂度:O(V ^ 2) | |||
|  | 
 | |||
|  | 更糟糕的案例时间复杂性:O(V ^ 3) | |||
|  | 
 | |||
|  | ### Python实现
 | |||
|  | 
 | |||
|  | ```python | |||
|  | # A large value as infinity 
 | |||
|  |  inf = 1e10  | |||
|  |   | |||
|  |  def floyd_warshall(weights):  | |||
|  |     V = len(weights)  | |||
|  |     distance_matrix = weights  | |||
|  |     for k in range(V):  | |||
|  |         next_distance_matrix = [list(row) for row in distance_matrix] # make a copy of distance matrix  | |||
|  |         for i in range(V):  | |||
|  |             for j in range(V):  | |||
|  |                 # Choose if the k vertex can work as a path with shorter distance  | |||
|  |                 next_distance_matrix[i][j] = min(distance_matrix[i][j], distance_matrix[i][k] + distance_matrix[k][j])  | |||
|  |         distance_matrix = next_distance_matrix # update  | |||
|  |     return distance_matrix  | |||
|  |   | |||
|  |  # A graph represented as Adjacency matrix  | |||
|  |  graph = [  | |||
|  |     [0, inf, inf, -3],  | |||
|  |     [inf, 0, inf, 8],  | |||
|  |     [inf, 4, 0, -2],  | |||
|  |     [5, inf, 3, 0]  | |||
|  |  ]  | |||
|  |   | |||
|  |  print(floyd_warshall(graph))  | |||
|  | ``` | |||
|  | 
 | |||
|  | #### 更多信息:
 | |||
|  | 
 | |||
|  | [图表](https://github.com/freecodecamp/guides/computer-science/data-structures/graphs/index.md) | |||
|  | 
 | |||
|  | [Floyd Warshall - 维基百科](https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm) |