29 lines
		
	
	
		
			885 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			29 lines
		
	
	
		
			885 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| 
								 | 
							
								---
							 | 
						|||
| 
								 | 
							
								title: Jump Search
							 | 
						|||
| 
								 | 
							
								localeTitle: 跳转搜索
							 | 
						|||
| 
								 | 
							
								---
							 | 
						|||
| 
								 | 
							
								## 跳转搜索
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								跳转搜索通过跳跃k itens定位已排序数组中的项目,然后验证项目是否在中间 先前的跳跃和当前跳跃。
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								# 复杂性最坏的情况
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								O(√N)
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								# 作品
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								1.  定义k的值,跳跃的数量:最佳跳跃大小为√N,其中N是数组的长度
							 | 
						|||
| 
								 | 
							
								2.  按条件`Array[i] < valueWanted < Array[i+k]`跳转数组k-by-k
							 | 
						|||
| 
								 | 
							
								3.  在`Array[i]`和`Array[i + k]`之间进行线性搜索
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								# 码
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								要查看此方法的代码实现示例,请访问以下链接:
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								[跳转搜索 - OpenGenus / cosmos](https://github.com/OpenGenus/cosmos/tree/master/code/search/jump_search)
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								# 积分
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								[逻辑的阵列图像](http://theoryofprogramming.com/2016/11/10/jump-search-algorithm/)
							 |