31 lines
		
	
	
		
			824 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			31 lines
		
	
	
		
			824 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| 
								 | 
							
								---
							 | 
						|||
| 
								 | 
							
								title: Integration Rules
							 | 
						|||
| 
								 | 
							
								localeTitle: 集成规则
							 | 
						|||
| 
								 | 
							
								---
							 | 
						|||
| 
								 | 
							
								## 集成规则
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								与差异化一样,我们在集成功能时使用各种规则。以下是一些最常见的。
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								**常数规则:** ∫kdx= kx + C其中k是常数
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								**权力规则:** ∫×n个 DX = +×n个+ 1 / \+ 1 + N≠1当C
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								**指数规则:** ∫ËKX DX = 1 / KXËKX + C,其中,k是常数
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								**三角规则:**
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								∫cos(x)dx = sin(x)+ C.
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								∫sin(x)dx = -cos(x)+ C.
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								**和/差规则:**
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								∫\[f(x)+ g(x)\] dx =∫f(x)dx +∫g(x)dx
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								∫\[f(x) - g(x)\] dx =∫f(x)dx - ∫g(x)dx
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								#### 更多信息:
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								[带示例的基本规则](http://archive.learnhigher.ac.uk/resources/files/Numeracy/Integration_webversion.pdf)
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								[深入分析指南](http://tutorial.math.lamar.edu/pdf/Calculus_Cheat_Sheet_Integrals.pdf)
							 |