49 lines
		
	
	
		
			1.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			49 lines
		
	
	
		
			1.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| 
								 | 
							
								---
							 | 
						||
| 
								 | 
							
								id: 5900f43c1000cf542c50ff4e
							 | 
						||
| 
								 | 
							
								title: 'Problem 207: Integer partition equations'
							 | 
						||
| 
								 | 
							
								challengeType: 5
							 | 
						||
| 
								 | 
							
								forumTopicId: 301848
							 | 
						||
| 
								 | 
							
								dashedName: problem-207-integer-partition-equations
							 | 
						||
| 
								 | 
							
								---
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --description--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								For some positive integers k, there exists an integer partition of the form 4t = 2t + k,
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								where 4t, 2t, and k are all positive integers and t is a real number.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The first two such partitions are 41 = 21 + 2 and 41.5849625... = 21.5849625... + 6.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Partitions where t is also an integer are called perfect. For any m ≥ 1 let P(m) be the proportion of such partitions that are perfect with k ≤ m. Thus P(6) = 1/2.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								In the following table are listed some values of P(m) P(5) = 1/1 P(10) = 1/2 P(15) = 2/3 P(20) = 1/2 P(25) = 1/2 P(30) = 2/5 ... P(180) = 1/4 P(185) = 3/13
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Find the smallest m for which P(m) < 1/12345
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --hints--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								`euler207()` should return 44043947822.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								assert.strictEqual(euler207(), 44043947822);
							 | 
						||
| 
								 | 
							
								```
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --seed--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								## --seed-contents--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								function euler207() {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  return true;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								euler207();
							 | 
						||
| 
								 | 
							
								```
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --solutions--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								// solution required
							 | 
						||
| 
								 | 
							
								```
							 |