51 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			51 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| 
								 | 
							
								---
							 | 
						||
| 
								 | 
							
								id: 5900f49b1000cf542c50ffad
							 | 
						||
| 
								 | 
							
								title: 'Problem 302: Strong Achilles Numbers'
							 | 
						||
| 
								 | 
							
								challengeType: 5
							 | 
						||
| 
								 | 
							
								forumTopicId: 301956
							 | 
						||
| 
								 | 
							
								dashedName: problem-302-strong-achilles-numbers
							 | 
						||
| 
								 | 
							
								---
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --description--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								A positive integer n is powerful if p2 is a divisor of n for every prime factor p in n.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								A positive integer n is a perfect power if n can be expressed as a power of another positive integer.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								A positive integer n is an Achilles number if n is powerful but not a perfect power. For example, 864 and 1800 are Achilles numbers: 864 = 25·33 and 1800 = 23·32·52.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								We shall call a positive integer S a Strong Achilles number if both S and φ(S) are Achilles numbers.1 For example, 864 is a Strong Achilles number: φ(864) = 288 = 25·32. However, 1800 isn't a Strong Achilles number because: φ(1800) = 480 = 25·31·51.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								There are 7 Strong Achilles numbers below 104 and 656 below 108.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								How many Strong Achilles numbers are there below 1018?
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								1 φ denotes Euler's totient function.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --hints--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								`euler302()` should return 1170060.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								assert.strictEqual(euler302(), 1170060);
							 | 
						||
| 
								 | 
							
								```
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --seed--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								## --seed-contents--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								function euler302() {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  return true;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								euler302();
							 | 
						||
| 
								 | 
							
								```
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --solutions--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								// solution required
							 | 
						||
| 
								 | 
							
								```
							 |