101 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			101 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| 
								 | 
							
								---
							 | 
						||
| 
								 | 
							
								id: 5900f3ac1000cf542c50febf
							 | 
						||
| 
								 | 
							
								title: 'Problem 64: Odd period square roots'
							 | 
						||
| 
								 | 
							
								challengeType: 5
							 | 
						||
| 
								 | 
							
								forumTopicId: 302176
							 | 
						||
| 
								 | 
							
								dashedName: problem-64-odd-period-square-roots
							 | 
						||
| 
								 | 
							
								---
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --description--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								All square roots are periodic when written as continued fractions and can be written in the form:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								$\\displaystyle \\quad \\quad \\sqrt{N}=a_0+\\frac 1 {a_1+\\frac 1 {a_2+ \\frac 1 {a3+ \\dots}}}$
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								For example, let us consider $\\sqrt{23}:$:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								$\\quad \\quad \\sqrt{23}=4+\\sqrt{23}-4=4+\\frac 1 {\\frac 1 {\\sqrt{23}-4}}=4+\\frac 1 {1+\\frac{\\sqrt{23}-3}7}$
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								If we continue we would get the following expansion:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								$\\displaystyle \\quad \\quad \\sqrt{23}=4+\\frac 1 {1+\\frac 1 {3+ \\frac 1 {1+\\frac 1 {8+ \\dots}}}}$
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The process can be summarized as follows:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								$\\quad \\quad a_0=4, \\frac 1 {\\sqrt{23}-4}=\\frac {\\sqrt{23}+4} 7=1+\\frac {\\sqrt{23}-3} 7$
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								$\\quad \\quad a_1=1, \\frac 7 {\\sqrt{23}-3}=\\frac {7(\\sqrt{23}+3)} {14}=3+\\frac {\\sqrt{23}-3} 2$
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								$\\quad \\quad a_2=3, \\frac 2 {\\sqrt{23}-3}=\\frac {2(\\sqrt{23}+3)} {14}=1+\\frac {\\sqrt{23}-4} 7$
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								$\\quad \\quad a_3=1, \\frac 7 {\\sqrt{23}-4}=\\frac {7(\\sqrt{23}+4)} 7=8+\\sqrt{23}-4$
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								$\\quad \\quad a_4=8, \\frac 1 {\\sqrt{23}-4}=\\frac {\\sqrt{23}+4} 7=1+\\frac {\\sqrt{23}-3} 7$
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								$\\quad \\quad a_5=1, \\frac 7 {\\sqrt{23}-3}=\\frac {7 (\\sqrt{23}+3)} {14}=3+\\frac {\\sqrt{23}-3} 2$
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								$\\quad \\quad a_6=3, \\frac 2 {\\sqrt{23}-3}=\\frac {2(\\sqrt{23}+3)} {14}=1+\\frac {\\sqrt{23}-4} 7$
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								$\\quad \\quad a_7=1, \\frac 7 {\\sqrt{23}-4}=\\frac {7(\\sqrt{23}+4)} {7}=8+\\sqrt{23}-4$
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								It can be seen that the sequence is repeating. For conciseness, we use the notation $\\sqrt{23}=\[4;(1,3,1,8)]$, to indicate that the block (1,3,1,8) repeats indefinitely.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The first ten continued fraction representations of (irrational) square roots are:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								$\\quad \\quad \\sqrt{2}=\[1;(2)]$, period = 1
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								$\\quad \\quad \\sqrt{3}=\[1;(1,2)]$, period = 2
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								$\\quad \\quad \\sqrt{5}=\[2;(4)]$, period = 1
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								$\\quad \\quad \\sqrt{6}=\[2;(2,4)]$, period = 2
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								$\\quad \\quad \\sqrt{7}=\[2;(1,1,1,4)]$, period = 4
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								$\\quad \\quad \\sqrt{8}=\[2;(1,4)]$, period = 2
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								$\\quad \\quad \\sqrt{10}=\[3;(6)]$, period = 1
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								$\\quad \\quad \\sqrt{11}=\[3;(3,6)]$, period = 2
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								$\\quad \\quad \\sqrt{12}=\[3;(2,6)]$, period = 2
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								$\\quad \\quad \\sqrt{13}=\[3;(1,1,1,1,6)]$, period = 5
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Exactly four continued fractions, for $N \\le 13$, have an odd period.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								How many continued fractions for $N \\le 10\\,000$ have an odd period?
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --hints--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								`oddPeriodSqrts()` should return a number.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								assert(typeof oddPeriodSqrts() === 'number');
							 | 
						||
| 
								 | 
							
								```
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								`oddPeriodSqrts()` should return 1322.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								assert.strictEqual(oddPeriodSqrts(), 1322);
							 | 
						||
| 
								 | 
							
								```
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --seed--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								## --seed-contents--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								function oddPeriodSqrts() {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  return true;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								oddPeriodSqrts();
							 | 
						||
| 
								 | 
							
								```
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --solutions--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								// solution required
							 | 
						||
| 
								 | 
							
								```
							 |