Como $x_2 = x_1$, paramos aqui. Então, depois de apenas duas iterações, descobrimos que a raiz arredondada de 4321 é 66 (a raiz quadrada real é 65.7343137…).
O número de iterações necessárias ao usar este método é surpreendentemente baixo. Por exemplo, podemos encontrar a raiz quadrada arredondada de um inteiro de 5 algarismos ($10.000 ≤ n ≤ 99.999$) com uma média de 3,2102888889 iterações (o valor médio foi arredondado para 10 casas decimais).
Usando o procedimento descrito acima, qual é o número médio de iterações necessárias para encontrar a raiz quadrada arredondada de um número de 14 algarismos (${10}^{13} ≤ n < {10}^{14}$)? Dê sua resposta arredondada para 10 casas decimais.
**Observação:** os símbolos $⌊x⌋$ e $⌈x⌉$ representam a função floor (piso) e ceiling (teto), respectivamente.