diff --git a/challenges/08-coding-interview-questions-and-take-home-assignments/project-euler-problems.json b/challenges/08-coding-interview-questions-and-take-home-assignments/project-euler-problems.json
index 1781d29fc6..82b614a75f 100644
--- a/challenges/08-coding-interview-questions-and-take-home-assignments/project-euler-problems.json
+++ b/challenges/08-coding-interview-questions-and-take-home-assignments/project-euler-problems.json
@@ -1139,21 +1139,24 @@
"type": "bonfire",
"title": "Problem 37: Truncatable primes",
"tests": [
- "assert.strictEqual(euler37(), 748317, 'message: euler37()
should return 748317.');"
+ "assert(truncatablePrimes(8) == 1986, 'message: truncatablePrimes(8)
should return 1986.');",
+ "assert(truncatablePrimes(9) == 5123, 'message: truncatablePrimes(9)
should return 5123.');",
+ "assert(truncatablePrimes(10) == 8920, 'message: truncatablePrimes(10)
should return 8920.');",
+ "assert(truncatablePrimes(11) == 748317, 'message: truncatablePrimes(11)
should return 748317.');"
],
"solutions": [],
"translations": {},
"challengeSeed": [
- "function euler37() {",
+ "function truncatablePrimes(n) {",
" // Good luck!",
- " return true;",
+ " return n;",
"}",
"",
- "euler37();"
+ "truncatablePrimes(11);"
],
"description": [
"The number 3797 has an interesting property. Being prime itself, it is possible to continuously remove digits from left to right, and remain prime at each stage: 3797, 797, 97, and 7. Similarly we can work from right to left: 3797, 379, 37, and 3.",
- "Find the sum of the only eleven primes that are both truncatable from left to right and right to left.",
+ "Find the sum of the only n (8 <= n <= 11) primes that are both truncatable from left to right and right to left.",
"NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes."
]
},