Feat: add new Markdown parser (#39800)

and change all the challenges to new `md` format.
This commit is contained in:
Oliver Eyton-Williams
2020-11-27 19:02:05 +01:00
committed by GitHub
parent a07f84c8ec
commit 0bd52f8bd1
2580 changed files with 113436 additions and 111979 deletions

View File

@ -1,20 +1,19 @@
---
id: 5900f3871000cf542c50fe9a
challengeType: 5
title: 'Problem 27: Quadratic primes'
challengeType: 5
forumTopicId: 301919
---
## Description
<section id='description'>
# --description--
Euler discovered the remarkable quadratic formula:
<div style='margin-left: 4em;'>$n^2 + n + 41$</div>
It turns out that the formula will produce 40 primes for the consecutive integer values $0 \le n \le 39$. However, when $n = 40, 40^2 + 40 + 41 = 40(40 + 1) + 41$ is divisible by 41, and certainly when $n = 41, 41^2 + 41 + 41$ is clearly divisible by 41.
It turns out that the formula will produce 40 primes for the consecutive integer values $0 \\le n \\le 39$. However, when $n = 40, 40^2 + 40 + 41 = 40(40 + 1) + 41$ is divisible by 41, and certainly when $n = 41, 41^2 + 41 + 41$ is clearly divisible by 41.
The incredible formula $n^2 - 79n + 1601$ was discovered, which produces 80 primes for the consecutive values $0 \le n \le 79$. The product of the coefficients, 79 and 1601, is 126479.
The incredible formula $n^2 - 79n + 1601$ was discovered, which produces 80 primes for the consecutive values $0 \\le n \\le 79$. The product of the coefficients, 79 and 1601, is 126479.
Considering quadratics of the form:
@ -26,37 +25,41 @@ Considering quadratics of the form:
Find the product of the coefficients, $a$ and $b$, for the quadratic expression that produces the maximum number of primes for consecutive values of $n$, starting with $n = 0$.
</section>
# --hints--
## Instructions
<section id='instructions'>
</section>
## Tests
<section id='tests'>
```yml
tests:
- text: <code>quadraticPrimes(200)</code> should return a number.
testString: assert(typeof quadraticPrimes(200) === 'number');
- text: <code>quadraticPrimes(200)</code> should return -4925.
testString: assert(quadraticPrimes(200) == -4925);
- text: <code>quadraticPrimes(500)</code> should return -18901.
testString: assert(quadraticPrimes(500) == -18901);
- text: <code>quadraticPrimes(800)</code> should return -43835.
testString: assert(quadraticPrimes(800) == -43835);
- text: <code>quadraticPrimes(1000)</code> should return -59231.
testString: assert(quadraticPrimes(1000) == -59231);
`quadraticPrimes(200)` should return a number.
```js
assert(typeof quadraticPrimes(200) === 'number');
```
</section>
`quadraticPrimes(200)` should return -4925.
## Challenge Seed
<section id='challengeSeed'>
```js
assert(quadraticPrimes(200) == -4925);
```
<div id='js-seed'>
`quadraticPrimes(500)` should return -18901.
```js
assert(quadraticPrimes(500) == -18901);
```
`quadraticPrimes(800)` should return -43835.
```js
assert(quadraticPrimes(800) == -43835);
```
`quadraticPrimes(1000)` should return -59231.
```js
assert(quadraticPrimes(1000) == -59231);
```
# --seed--
## --seed-contents--
```js
function quadraticPrimes(range) {
@ -67,17 +70,8 @@ function quadraticPrimes(range) {
quadraticPrimes(1000);
```
</div>
</section>
## Solution
<section id='solution'>
# --solutions--
```js
// solution required
```
</section>