Feat: add new Markdown parser (#39800)
and change all the challenges to new `md` format.
This commit is contained in:
committed by
GitHub
parent
a07f84c8ec
commit
0bd52f8bd1
@ -1,64 +1,39 @@
|
||||
---
|
||||
id: 5900f4cd1000cf542c50ffe0
|
||||
challengeType: 5
|
||||
title: 'Problem 353: Risky moon'
|
||||
challengeType: 5
|
||||
forumTopicId: 302013
|
||||
---
|
||||
|
||||
## Description
|
||||
<section id='description'>
|
||||
# --description--
|
||||
|
||||
A moon could be described by the sphere C(r) with centre (0,0,0) and radius r.
|
||||
|
||||
|
||||
|
||||
There are stations on the moon at the points on the surface of C(r) with integer coordinates. The station at (0,0,r) is called North Pole station, the station at (0,0,-r) is called South Pole station.
|
||||
|
||||
|
||||
|
||||
All stations are connected with each other via the shortest road on the great arc through the stations. A journey between two stations is risky. If d is the length of the road between two stations, (d/(π r))2 is a measure for the risk of the journey (let us call it the risk of the road). If the journey includes more than two stations, the risk of the journey is the sum of risks of the used roads.
|
||||
|
||||
|
||||
|
||||
A direct journey from the North Pole station to the South Pole station has the length πr and risk 1. The journey from the North Pole station to the South Pole station via (0,r,0) has the same length, but a smaller risk: (½πr/(πr))2+(½πr/(πr))2=0.5.
|
||||
|
||||
|
||||
A direct journey from the North Pole station to the South Pole station has the length πr and risk 1. The journey from the North Pole station to the South Pole station via (0,r,0) has the same length, but a smaller risk: (½πr/(πr))2+(½πr/(πr))2=0.5.
|
||||
|
||||
The minimal risk of a journey from the North Pole station to the South Pole station on C(r) is M(r).
|
||||
|
||||
|
||||
|
||||
You are given that M(7)=0.1784943998 rounded to 10 digits behind the decimal point.
|
||||
|
||||
|
||||
You are given that M(7)=0.1784943998 rounded to 10 digits behind the decimal point.
|
||||
|
||||
Find ∑M(2n-1) for 1≤n≤15.
|
||||
|
||||
|
||||
|
||||
Give your answer rounded to 10 digits behind the decimal point in the form a.bcdefghijk.
|
||||
</section>
|
||||
|
||||
## Instructions
|
||||
<section id='instructions'>
|
||||
# --hints--
|
||||
|
||||
</section>
|
||||
|
||||
## Tests
|
||||
<section id='tests'>
|
||||
|
||||
```yml
|
||||
tests:
|
||||
- text: <code>euler353()</code> should return 1.2759860331.
|
||||
testString: assert.strictEqual(euler353(), 1.2759860331);
|
||||
`euler353()` should return 1.2759860331.
|
||||
|
||||
```js
|
||||
assert.strictEqual(euler353(), 1.2759860331);
|
||||
```
|
||||
|
||||
</section>
|
||||
# --seed--
|
||||
|
||||
## Challenge Seed
|
||||
<section id='challengeSeed'>
|
||||
|
||||
<div id='js-seed'>
|
||||
## --seed-contents--
|
||||
|
||||
```js
|
||||
function euler353() {
|
||||
@ -69,17 +44,8 @@ function euler353() {
|
||||
euler353();
|
||||
```
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
</section>
|
||||
|
||||
## Solution
|
||||
<section id='solution'>
|
||||
# --solutions--
|
||||
|
||||
```js
|
||||
// solution required
|
||||
```
|
||||
|
||||
</section>
|
||||
|
Reference in New Issue
Block a user