Feat: add new Markdown parser (#39800)

and change all the challenges to new `md` format.
This commit is contained in:
Oliver Eyton-Williams
2020-11-27 19:02:05 +01:00
committed by GitHub
parent a07f84c8ec
commit 0bd52f8bd1
2580 changed files with 113436 additions and 111979 deletions

View File

@ -1,14 +1,16 @@
---
title: Ethiopian multiplication
id: 599d1566a02b571412643b84
title: Ethiopian multiplication
challengeType: 5
forumTopicId: 302257
---
## Description
<section id='description'>
# --description--
Ethiopian multiplication is a method of multiplying integers using only addition, doubling, and halving.
<strong>Method:</strong>
**Method:**
<ol>
<li>Take two numbers to be multiplied and write them down at the top of two columns</li>
<li>In the left-hand column repeatedly halve the last number, discarding any remainders, and write the result below the last in the same column, until you write a value of <code>1</code></li>
@ -16,37 +18,44 @@ Ethiopian multiplication is a method of multiplying integers using only addition
<li>Examine the table produced and discard any row where the value in the left column is even</li>
<li>Sum the values in the right-hand column that remain to produce the result of multiplying the original two numbers together</li>
</ol>
<strong>For example:</strong> <code>17 &times; 34</code>
<pre>
17 34
**For example:** `17 × 34`
<pre>17 34
</pre>
Halving the first column:
<pre>
17 34
<pre>17 34
8
4
2
1
</pre>
Doubling the second column:
<pre>
17 34
<pre>17 34
8 68
4 136
2 272
1 544
</pre>
Strike-out rows whose first cell is even:
<pre>
17 34
<pre>17 34
8 <strike>68</strike>
4 <strike>136</strike>
2 <strike>272</strike>
1 544
</pre>
Sum the remaining numbers in the right-hand column:
<pre>
17 34
<!-- markdownlint-disable MD003 -->
<pre>17 34
8 --
4 ---
2 ---
@ -54,46 +63,65 @@ Sum the remaining numbers in the right-hand column:
====
578
</pre>
So <code>17</code> multiplied by <code>34</code>, by the Ethiopian method is <code>578</code>.
</section>
## Instructions
<section id='instructions'>
<!-- markdownlint-enable MD003 -->
So `17` multiplied by `34`, by the Ethiopian method is `578`.
# --instructions--
The task is to define three named functions/methods/procedures/subroutines:
<ol>
<li>one to halve an integer,</li>
<li>one to double an integer, and</li>
<li>one to state if an integer is even</li>
</ol>
Use these functions to create a function that does Ethiopian multiplication.
</section>
## Tests
<section id='tests'>
<!-- markdownlint-disable MD046-->
# --hints--
```yml
tests:
- text: <code>eth_mult</code> should be a function.
testString: assert(typeof eth_mult === 'function');
- text: <code>eth_mult(17,34)</code> should return <code>578</code>.
testString: assert.equal(eth_mult(17, 34), 578);
- text: <code>eth_mult(23,46)</code> should return <code>1058</code>.
testString: assert.equal(eth_mult(23, 46), 1058);
- text: <code>eth_mult(12,27)</code> should return <code>324</code>.
testString: assert.equal(eth_mult(12, 27), 324);
- text: <code>eth_mult(56,98)</code> should return <code>5488</code>.
testString: assert.equal(eth_mult(56, 98), 5488);
- text: <code>eth_mult(63,74)</code> should return <code>4662</code>.
testString: assert.equal(eth_mult(63, 74), 4662);
`eth_mult` should be a function.
```js
assert(typeof eth_mult === 'function');
```
</section>
`eth_mult(17,34)` should return `578`.
## Challenge Seed
<section id='challengeSeed'>
```js
assert.equal(eth_mult(17, 34), 578);
```
<div id='js-seed'>
`eth_mult(23,46)` should return `1058`.
```js
assert.equal(eth_mult(23, 46), 1058);
```
`eth_mult(12,27)` should return `324`.
```js
assert.equal(eth_mult(12, 27), 324);
```
`eth_mult(56,98)` should return `5488`.
```js
assert.equal(eth_mult(56, 98), 5488);
```
`eth_mult(63,74)` should return `4662`.
```js
assert.equal(eth_mult(63, 74), 4662);
```
# --seed--
## --seed-contents--
```js
function eth_mult(a, b) {
@ -101,15 +129,7 @@ function eth_mult(a, b) {
}
```
</div>
</section>
## Solution
<section id='solution'>
# --solutions--
```js
function eth_mult(a, b) {
@ -132,5 +152,3 @@ function eth_mult(a, b) {
return sum + b[0];
}
```
</section>