fix(guide): restructure curriculum guide articles (#36501)

* fix: restructure certifications guide articles
* fix: added 3 dashes line before prob expl
* fix: added 3 dashes line before hints
* fix: added 3 dashes line before solutions
This commit is contained in:
Randell Dawson
2019-07-24 00:59:27 -07:00
committed by mrugesh
parent c911e77eed
commit 1494a50123
990 changed files with 13202 additions and 8628 deletions

View File

@@ -1,56 +1,46 @@
---
title: Breadth-First Search
---
## Breadth-First Search
# Breadth-First Search
Let's first define the `Tree` class to be used for the implementation of the Breadth First Search algorithm.
```python
class Tree:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
---
## Solutions
<details><summary>Solution 1 (Click to Show/Hide)</summary>
```js
function bfs(graph, root) {
// Distance object returned
var nodesLen = {};
// Set all distances to infinity
for (var i = 0; i < graph.length; i++) {
nodesLen[i] = Infinity;
}
nodesLen[root] = 0; // ...except root node
var queue = [root]; // Keep track of nodes to visit
var current; // Current node traversing
// Keep on going until no more nodes to traverse
while (queue.length !== 0) {
current = queue.shift();
// Get adjacent nodes from current node
var curConnected = graph[current]; // Get layer of edges from current
var neighborIdx = []; // List of nodes with edges
var idx = curConnected.indexOf(1); // Get first edge connection
while (idx !== -1) {
neighborIdx.push(idx); // Add to list of neighbors
idx = curConnected.indexOf(1, idx + 1); // Keep on searching
}
// Loop through neighbors and get lengths
for (var j = 0; j < neighborIdx.length; j++) {
// Increment distance for nodes traversed
if (nodesLen[neighborIdx[j]] === Infinity) {
nodesLen[neighborIdx[j]] = nodesLen[current] + 1;
queue.push(neighborIdx[j]); // Add new neighbors to queue
}
}
}
return nodesLen;
}
```
The breadth first search algorithm moves from one level to another starting from the root of the tree. We will make use of a `queue` for this.
```python
def bfs(root_node):
queue = [root_node]
while queue:
top_element = queue.pop()
print("Node processed: ",top_element)
if top_element.left:
queue.append(top_element.left)
if top_element.right:
queue.append(top_element.right)
```
We can easily modify the above code to print the level of each node as well.
```python
def bfs(root_node):
queue = [(root_node, 0)]
while queue:
top_element, level = queue.pop()
print("Node processed: {} at level {}".format(top_element, level))
if top_element.left:
queue.append((top_element.left, level + 1))
if top_element.right:
queue.append((top_element.right, level + 1))
```
| Complexity | Time | Space |
| ----- | ------ | ------ |
| BFS | n | n |
</details>