diff --git a/curriculum/challenges/english/08-coding-interview-prep/rosetta-code/department-numbers.english.md b/curriculum/challenges/english/08-coding-interview-prep/rosetta-code/department-numbers.english.md
index ef2537f814..488d5c0ed8 100644
--- a/curriculum/challenges/english/08-coding-interview-prep/rosetta-code/department-numbers.english.md
+++ b/curriculum/challenges/english/08-coding-interview-prep/rosetta-code/department-numbers.english.md
@@ -20,20 +20,13 @@ The Chief of the Police doesn't like odd numbers and wants to have an even numbe
## Instructions
Write a program which outputs all valid combinations:
-[2, 3, 7]
-[2, 4, 6]
-[2, 6, 4]
-[2, 7, 3]
-[4, 1, 7]
-[4, 2, 6]
-[4, 3, 5]
-[4, 5, 3]
-[4, 6, 2]
-[4, 7, 1]
-[6, 1, 5]
-[6, 2, 4]
-[6, 4, 2]
-[6, 5, 1]
+
+[2, 3, 7] [2, 4, 6] [2, 6, 4]
+[2, 7, 3] [4, 1, 7] [4, 2, 6]
+[4, 3, 5] [4, 5, 3] [4, 6, 2]
+[4, 7, 1] [6, 1, 5] [6, 2, 4]
+[6, 4, 2] [6, 5, 1]
+
## Tests
diff --git a/curriculum/challenges/english/08-coding-interview-prep/rosetta-code/fractran.english.md b/curriculum/challenges/english/08-coding-interview-prep/rosetta-code/fractran.english.md
index 3a520193c8..92d1de9687 100644
--- a/curriculum/challenges/english/08-coding-interview-prep/rosetta-code/fractran.english.md
+++ b/curriculum/challenges/english/08-coding-interview-prep/rosetta-code/fractran.english.md
@@ -14,11 +14,11 @@ The program is run by updating the integer $n$ as follows:
repeat this rule until no fraction in the list produces an integer when multiplied by $n$, then halt.
Conway gave a program for primes in FRACTRAN:
-$17/91$, $78/85$, $19/51$, $23/38$, $29/33$, $77/29$, $95/23$, $77/19$, $1/17$, $11/13$, $13/11$, $15/14$, $15/2$, $55/1$
-Starting with $n=2$, this FRACTRAN program will change $n$ to $15=2\times (15/2)$, then $825=15\times (55/1)$, generating the following sequence of integers:
-$2$, $15$, $825$, $725$, $1925$, $2275$, $425$, $390$, $330$, $290$, $770$, $\ldots$
+$\dfrac{17}{91}$, $\dfrac{78}{85}$, $\dfrac{19}{51}$, $\dfrac{23}{38}$, $\dfrac{29}{33}$, $\dfrac{77}{29}$, $\dfrac{95}{23}$, $\dfrac{77}{19}$, $\dfrac{1}{17}$, $\dfrac{11}{13}$, $\dfrac{13}{11}$, $\dfrac{15}{14}$, $\dfrac{15}{2}$, $\dfrac{55}{1}$
+Starting with $n=2$, this FRACTRAN program will change $n$ to $15=2\times (\frac{15}{2})$, then $825=15\times (\frac{55}{1})$, generating the following sequence of integers:
+$2$, $15$, $825$, $725$, $1925$, $2275$, $425$, $390$, $330$, $290$, $770$, $\ldots$
After 2, this sequence contains the following powers of 2:
-$2^2=4$, $2^3=8$, $2^5=32$, $2^7=128$, $2^{11}=2048$, $2^{13}=8192$, $2^{17}=131072$, $2^{19}=524288$, $\ldots$
+$2^2=4$, $2^3=8$, $2^5=32$, $2^7=128$, $2^{11}=2048$, $2^{13}=8192$, $2^{17}=131072$, $2^{19}=524288$, $\ldots$
which are the prime powers of 2.