From 14bcbac66995f5122e72c5c8cf9f082fc5cb3f4f Mon Sep 17 00:00:00 2001 From: Kris Koishigawa Date: Sat, 30 Mar 2019 23:06:46 +0900 Subject: [PATCH] fix(challenges): Added blockquote to department numbers and fixed fractions in fractran --- .../department-numbers.english.md | 21 +++++++------------ .../rosetta-code/fractran.english.md | 8 +++---- 2 files changed, 11 insertions(+), 18 deletions(-) diff --git a/curriculum/challenges/english/08-coding-interview-prep/rosetta-code/department-numbers.english.md b/curriculum/challenges/english/08-coding-interview-prep/rosetta-code/department-numbers.english.md index ef2537f814..488d5c0ed8 100644 --- a/curriculum/challenges/english/08-coding-interview-prep/rosetta-code/department-numbers.english.md +++ b/curriculum/challenges/english/08-coding-interview-prep/rosetta-code/department-numbers.english.md @@ -20,20 +20,13 @@ The Chief of the Police doesn't like odd numbers and wants to have an even numbe ## Instructions
Write a program which outputs all valid combinations: -[2, 3, 7] -[2, 4, 6] -[2, 6, 4] -[2, 7, 3] -[4, 1, 7] -[4, 2, 6] -[4, 3, 5] -[4, 5, 3] -[4, 6, 2] -[4, 7, 1] -[6, 1, 5] -[6, 2, 4] -[6, 4, 2] -[6, 5, 1] +
+[2, 3, 7] [2, 4, 6] [2, 6, 4]
+[2, 7, 3] [4, 1, 7] [4, 2, 6]
+[4, 3, 5] [4, 5, 3] [4, 6, 2]
+[4, 7, 1] [6, 1, 5] [6, 2, 4]
+[6, 4, 2] [6, 5, 1] +
## Tests diff --git a/curriculum/challenges/english/08-coding-interview-prep/rosetta-code/fractran.english.md b/curriculum/challenges/english/08-coding-interview-prep/rosetta-code/fractran.english.md index 3a520193c8..92d1de9687 100644 --- a/curriculum/challenges/english/08-coding-interview-prep/rosetta-code/fractran.english.md +++ b/curriculum/challenges/english/08-coding-interview-prep/rosetta-code/fractran.english.md @@ -14,11 +14,11 @@ The program is run by updating the integer $n$ as follows:
  • repeat this rule until no fraction in the list produces an integer when multiplied by $n$, then halt.
  • Conway gave a program for primes in FRACTRAN: -$17/91$, $78/85$, $19/51$, $23/38$, $29/33$, $77/29$, $95/23$, $77/19$, $1/17$, $11/13$, $13/11$, $15/14$, $15/2$, $55/1$ -Starting with $n=2$, this FRACTRAN program will change $n$ to $15=2\times (15/2)$, then $825=15\times (55/1)$, generating the following sequence of integers: -$2$, $15$, $825$, $725$, $1925$, $2275$, $425$, $390$, $330$, $290$, $770$, $\ldots$ +$\dfrac{17}{91}$, $\dfrac{78}{85}$, $\dfrac{19}{51}$, $\dfrac{23}{38}$, $\dfrac{29}{33}$, $\dfrac{77}{29}$, $\dfrac{95}{23}$, $\dfrac{77}{19}$, $\dfrac{1}{17}$, $\dfrac{11}{13}$, $\dfrac{13}{11}$, $\dfrac{15}{14}$, $\dfrac{15}{2}$, $\dfrac{55}{1}$ +Starting with $n=2$, this FRACTRAN program will change $n$ to $15=2\times (\frac{15}{2})$, then $825=15\times (\frac{55}{1})$, generating the following sequence of integers: +$2$, $15$, $825$, $725$, $1925$, $2275$, $425$, $390$, $330$, $290$, $770$, $\ldots$ After 2, this sequence contains the following powers of 2: -$2^2=4$, $2^3=8$, $2^5=32$, $2^7=128$, $2^{11}=2048$, $2^{13}=8192$, $2^{17}=131072$, $2^{19}=524288$, $\ldots$ +$2^2=4$, $2^3=8$, $2^5=32$, $2^7=128$, $2^{11}=2048$, $2^{13}=8192$, $2^{17}=131072$, $2^{19}=524288$, $\ldots$ which are the prime powers of 2.