chore(i18n,curriculum): processed translations (#42734)

This commit is contained in:
camperbot
2021-07-03 20:07:10 +05:30
committed by GitHub
parent 0a0caf18ae
commit 21bbc1ce8d
32 changed files with 360 additions and 359 deletions

View File

@ -1,6 +1,6 @@
---
id: 5e9a093a74c4063ca6f7c14e
title: Data Analysis Example B
title: 数据分析 案例 B
challengeType: 11
videoId: 0kJz0q0pvgQ
dashedName: data-analysis-example-b
@ -8,30 +8,30 @@ dashedName: data-analysis-example-b
# --description--
*Instead of using notebooks.ai like it shows in the video, you can use Google Colab instead.*
*您可以使用 Google Colab而不是像视频中显示的那样使用 notebooks.ai。*
More resources:
更多资源:
- [Notebooks on GitHub](https://github.com/ine-rmotr-curriculum/FreeCodeCamp-Pandas-Real-Life-Example)
- [How to open Notebooks from GitHub using Google Colab.](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
- [在 GitHub 平台的 Notebooks](https://github.com/ine-rmotr-curriculum/FreeCodeCamp-Pandas-Real-Life-Example)
- [如何使用 Google Colab 来打开 GitHub 上的 Notebooks](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
# --question--
## --text--
What does the `loc` method allow you to do?
`loc` 方法允许您做什么?
## --answers--
Retrieve a subset of rows and columns by supplying integer-location arguments.
通过提供整数位置参数来获取一个行和列的子集。
---
Access a group of rows and columns by supplying label(s) arguments.
通过提供标签参数来访问一组行和列。
---
Returns the first `n` rows based on the integer argument supplied.
根据提供的整数参数返回前 `n` 行。
## --video-solution--

View File

@ -1,6 +1,6 @@
---
id: 5e9a093a74c4063ca6f7c15d
title: Data Cleaning Introduction
title: 数据清理简介
challengeType: 11
videoId: ovYNhnltVxY
dashedName: data-cleaning-introduction
@ -8,18 +8,18 @@ dashedName: data-cleaning-introduction
# --description--
*Instead of using notebooks.ai like it shows in the video, you can use Google Colab instead.*
*您可以使用 Google Colab而不是像视频中显示的那样使用 notebooks.ai。*
More resources:
以下有更多的资料:
- [Notebooks on GitHub](https://github.com/ine-rmotr-curriculum/data-cleaning-rmotr-freecodecamp)
- [How to open Notebooks from GitHub using Google Colab.](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
- [在 GitHub 平台的 Notebooks](https://github.com/ine-rmotr-curriculum/data-cleaning-rmotr-freecodecamp)
- [如何使用 Google Colab 来打开 GitHub 上的 Notebooks](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
# --question--
## --text--
What will the following code print out?
以下代码会打印出什么?
```py
import pandas as pd

View File

@ -1,23 +1,24 @@
---
id: 5e46f7e5ac417301a38fb928
title: Mean-Variance-Standard Deviation Calculator
title: 均值-方差-标准差 计算器
challengeType: 10
forumTopicId: 462366
dashedName: mean-variance-standard-deviation-calculator
---
# --description--
Create a function that uses Numpy to output the mean, variance, and standard deviation of the rows, columns, and elements in a 3 x 3 matrix.
创建一个函数,这个函数可以使用 Numpy 输出 3 x 3 矩阵的每一行、每一列和所有元素的均值,方差和标准差。
You can access [the full project description and starter code on Repl.it](https://repl.it/github/freeCodeCamp/boilerplate-mean-variance-standard-deviation-calculator).
你可以在 [Replit](https://replit.com/github/freeCodeCamp/boilerplate-mean-variance-standard-deviation-calculator) 上查看整个项目的具体描述和初始代码。
After going to that link, fork the project. Once you complete the project based on the instructions in 'README.md', submit your project link below.
点击此链接fork 这个项目。 当你根据 “README.md” 中的说明完成了项目,请在下方提交你的项目链接。
We are still developing the interactive instructional part of the data analysis with Python curriculum. For now, you will have to use other resources to learn how to pass this challenge.
我们仍在开发 Python 数据分析课程的交互式教学。 现在,您将需要使用其他资源来学习如何通过这一挑战。
# --hints--
It should pass all Python tests.
它应该通过所有的 Python 测试。
```js

View File

@ -1,6 +1,6 @@
---
id: 5e9a0a8e09c5df3cc3600eda
title: Loading Data and Advanced Indexing
title: 加载数据和高级索引
challengeType: 11
videoId: tUdBZ7pF8Jg
dashedName: loading-data-and-advanced-indexing
@ -10,14 +10,14 @@ dashedName: loading-data-and-advanced-indexing
## --text--
Given a file named `data.txt` with these contents:
给定一个名为 `data.txt` 的文件,其中包含以下内容:
<pre>
29,97,32,100,45
15,88,5,75,22
</pre>
What code would produce the following array?
哪段代码会生成下面的数组?
```py
[29. 32. 45. 15. 5. 22.]

View File

@ -1,6 +1,6 @@
---
id: 5e9a0a8e09c5df3cc3600ed2
title: What is NumPy
title: Numpy 是什么?
challengeType: 11
videoId: 5Nwfs5Ej85Q
dashedName: what-is-numpy
@ -10,23 +10,23 @@ dashedName: what-is-numpy
## --text--
Why are Numpy arrays faster than regular Python lists?
为什么 Numpy 数组要比常规的 Python 列表更快?
## --answers--
Numpy does not perform type checking while iterating through objects.
Numpy 在遍历对象时不执行类型检查。
---
Numpy uses fixed types.
Numpy 使用固定类型。
---
Numpy uses contiguous memory.
Numpy 使用连续内存。
---
All of the above.
上述所有的。
## --video-solution--