chore(i18n,curriculum): processed translations (#42734)

This commit is contained in:
camperbot
2021-07-03 20:07:10 +05:30
committed by GitHub
parent 0a0caf18ae
commit 21bbc1ce8d
32 changed files with 360 additions and 359 deletions

View File

@ -1,6 +1,6 @@
---
id: 5e9a0a8e09c5df3cc3600eda
title: Loading Data and Advanced Indexing
title: 加載數據和高級索引
challengeType: 11
videoId: tUdBZ7pF8Jg
dashedName: loading-data-and-advanced-indexing
@ -10,14 +10,14 @@ dashedName: loading-data-and-advanced-indexing
## --text--
Given a file named `data.txt` with these contents:
給定一個名爲 `data.txt` 的文件,其中包含以下內容:
<pre>
29,97,32,100,45
15,88,5,75,22
</pre>
What code would produce the following array?
哪段代碼會生成下面的數組?
```py
[29. 32. 45. 15. 5. 22.]

View File

@ -1,6 +1,6 @@
---
id: 5e9a0a8e09c5df3cc3600ed2
title: What is NumPy
title: Numpy 是什麼?
challengeType: 11
videoId: 5Nwfs5Ej85Q
dashedName: what-is-numpy
@ -10,23 +10,23 @@ dashedName: what-is-numpy
## --text--
Why are Numpy arrays faster than regular Python lists?
爲什麼 Numpy 數組要比常規的 Python 列表更快?
## --answers--
Numpy does not perform type checking while iterating through objects.
Numpy 在遍歷對象時不執行類型檢查。
---
Numpy uses fixed types.
Numpy 使用固定類型。
---
Numpy uses contiguous memory.
Numpy 使用連續內存。
---
All of the above.
上述所有的。
## --video-solution--