fix: replace .english.md extension with .md
This commit is contained in:
@ -0,0 +1,136 @@
|
||||
---
|
||||
title: Ethiopian multiplication
|
||||
id: 599d1566a02b571412643b84
|
||||
challengeType: 5
|
||||
forumTopicId: 302257
|
||||
---
|
||||
|
||||
## Description
|
||||
<section id='description'>
|
||||
Ethiopian multiplication is a method of multiplying integers using only addition, doubling, and halving.
|
||||
<strong>Method:</strong>
|
||||
<ol>
|
||||
<li>Take two numbers to be multiplied and write them down at the top of two columns</li>
|
||||
<li>In the left-hand column repeatedly halve the last number, discarding any remainders, and write the result below the last in the same column, until you write a value of <code>1</code></li>
|
||||
<li>In the right-hand column repeatedly double the last number and write the result below. stop when you add a result in the same row as where the left hand column shows <code>1</code></li>
|
||||
<li>Examine the table produced and discard any row where the value in the left column is even</li>
|
||||
<li>Sum the values in the right-hand column that remain to produce the result of multiplying the original two numbers together</li>
|
||||
</ol>
|
||||
<strong>For example:</strong> <code>17 × 34</code>
|
||||
<pre>
|
||||
17 34
|
||||
</pre>
|
||||
Halving the first column:
|
||||
<pre>
|
||||
17 34
|
||||
8
|
||||
4
|
||||
2
|
||||
1
|
||||
</pre>
|
||||
Doubling the second column:
|
||||
<pre>
|
||||
17 34
|
||||
8 68
|
||||
4 136
|
||||
2 272
|
||||
1 544
|
||||
</pre>
|
||||
Strike-out rows whose first cell is even:
|
||||
<pre>
|
||||
17 34
|
||||
8 <strike>68</strike>
|
||||
4 <strike>136</strike>
|
||||
2 <strike>272</strike>
|
||||
1 544
|
||||
</pre>
|
||||
Sum the remaining numbers in the right-hand column:
|
||||
<pre>
|
||||
17 34
|
||||
8 --
|
||||
4 ---
|
||||
2 ---
|
||||
1 544
|
||||
====
|
||||
578
|
||||
</pre>
|
||||
So <code>17</code> multiplied by <code>34</code>, by the Ethiopian method is <code>578</code>.
|
||||
</section>
|
||||
|
||||
## Instructions
|
||||
<section id='instructions'>
|
||||
The task is to define three named functions/methods/procedures/subroutines:
|
||||
<ol>
|
||||
<li>one to halve an integer,</li>
|
||||
<li>one to double an integer, and</li>
|
||||
<li>one to state if an integer is even</li>
|
||||
</ol>
|
||||
Use these functions to create a function that does Ethiopian multiplication.
|
||||
</section>
|
||||
|
||||
## Tests
|
||||
<section id='tests'>
|
||||
|
||||
```yml
|
||||
tests:
|
||||
- text: <code>eth_mult</code> should be a function.
|
||||
testString: assert(typeof eth_mult === 'function');
|
||||
- text: <code>eth_mult(17,34)</code> should return <code>578</code>.
|
||||
testString: assert.equal(eth_mult(17, 34), 578);
|
||||
- text: <code>eth_mult(23,46)</code> should return <code>1058</code>.
|
||||
testString: assert.equal(eth_mult(23, 46), 1058);
|
||||
- text: <code>eth_mult(12,27)</code> should return <code>324</code>.
|
||||
testString: assert.equal(eth_mult(12, 27), 324);
|
||||
- text: <code>eth_mult(56,98)</code> should return <code>5488</code>.
|
||||
testString: assert.equal(eth_mult(56, 98), 5488);
|
||||
- text: <code>eth_mult(63,74)</code> should return <code>4662</code>.
|
||||
testString: assert.equal(eth_mult(63, 74), 4662);
|
||||
|
||||
```
|
||||
|
||||
</section>
|
||||
|
||||
## Challenge Seed
|
||||
<section id='challengeSeed'>
|
||||
|
||||
<div id='js-seed'>
|
||||
|
||||
```js
|
||||
function eth_mult(a, b) {
|
||||
|
||||
}
|
||||
```
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
</section>
|
||||
|
||||
## Solution
|
||||
<section id='solution'>
|
||||
|
||||
|
||||
```js
|
||||
function eth_mult(a, b) {
|
||||
let sum = 0; a = [a]; b = [b];
|
||||
|
||||
let half = a => a / 2,
|
||||
double = a => a * 2,
|
||||
is_even = a => a % 2 == 0;
|
||||
|
||||
while (a[0] !== 1) {
|
||||
a.unshift(Math.floor(half(a[0])));
|
||||
b.unshift(double(b[0]));
|
||||
}
|
||||
|
||||
for (let i = a.length - 1; i > 0; i -= 1) {
|
||||
if (!is_even(a[i])) {
|
||||
sum += b[i];
|
||||
}
|
||||
}
|
||||
return sum + b[0];
|
||||
}
|
||||
```
|
||||
|
||||
</section>
|
Reference in New Issue
Block a user