fix: replace .english.md extension with .md
This commit is contained in:
@ -0,0 +1,372 @@
|
||||
---
|
||||
id: 5a23c84252665b21eecc7ecb
|
||||
title: K-d tree
|
||||
challengeType: 5
|
||||
forumTopicId: 302295
|
||||
---
|
||||
|
||||
## Description
|
||||
|
||||
<section id='description'>
|
||||
|
||||
A k-d tree (short for <i>k</i>-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space.
|
||||
k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches).
|
||||
k-d trees are a special case of binary space partitioning trees. k-d trees are not suitable, however, for efficiently finding the nearest neighbor in high dimensional spaces. As a general rule, if the dimensionality is <i>k</i>, the number of points in the data, <i>N</i>, should be <i>N</i> ≫ 2<sup><i>k</i></sup>.
|
||||
Otherwise, when k-d trees are used with high-dimensional data, most of the points in the tree will be evaluated and the efficiency is no better than exhaustive search, and other methods such as approximate nearest-neighbor are used instead.
|
||||
|
||||
</section>
|
||||
|
||||
## Instructions
|
||||
|
||||
<section id='instructions'>
|
||||
|
||||
Write a function to perform a nearest neighbour search using k-d tree. The function takes two parameters: an array of k-dimensional points, and a single k-dimensional point whose nearest neighbour should be returned by the function. A k-dimensional point will be given as an array of k elements.
|
||||
|
||||
</section>
|
||||
|
||||
## Tests
|
||||
|
||||
<section id='tests'>
|
||||
|
||||
```yml
|
||||
tests:
|
||||
- text: <code>kdNN</code> should be a function.
|
||||
testString: assert(typeof kdNN == 'function');
|
||||
- text: <code>kdNN([[[2, 3], [5, 4], [9, 6], [4, 7], [8, 1], [7, 2]], [9, 2])</code> should return an array.
|
||||
testString: assert(Array.isArray(kdNN([[2, 3], [5, 4], [9, 6], [4, 7], [8, 1], [7, 2]], [9, 2])));
|
||||
- text: <code>kdNN([[[2, 3], [5, 4], [9, 6], [4, 7], [8, 1], [7, 2]], [9, 2])</code> should return <code>[ 8, 1 ]</code>.
|
||||
testString: assert.deepEqual(kdNN([[2, 3], [5, 4], [9, 6], [4, 7], [8, 1], [7, 2]], [9, 2]), [8, 1]);
|
||||
- text: <code>kdNN([[[2, 3], [5, 4], [9, 6], [4, 7], [8, 1], [7, 2]], [7, 1])</code> should return <code>[ 8, 1 ]</code>.
|
||||
testString: assert.deepEqual(kdNN([[2, 3], [5, 4], [9, 6], [4, 7], [8, 1], [7, 2]], [7, 1]), [8, 1]);
|
||||
- text: <code>kdNN([[[2, 3], [5, 4], [9, 6], [4, 7], [8, 1], [7, 2]], [3, 2])</code> should return <code>[ 2, 3 ]</code>.
|
||||
testString: assert.deepEqual(kdNN([[2, 3], [5, 4], [9, 6], [4, 7], [8, 1], [7, 2]], [3, 2]), [2, 3]);
|
||||
- text: <code>kdNN([[2, 3, 1], [9, 4, 5], [4, 6, 7], [1, 2, 5], [7, 8, 9], [3, 6, 1]], [1, 2, 3])</code> should return <code>[ 1, 2, 5 ]</code>.
|
||||
testString: assert.deepEqual(kdNN([[2, 3, 1], [9, 4, 5], [4, 6, 7], [1, 2, 5], [7, 8, 9], [3, 6, 1]], [1, 2, 3]), [1, 2, 5]);
|
||||
- text: <code>kdNN([[2, 3, 1], [9, 4, 5], [4, 6, 7], [1, 2, 5], [7, 8, 9], [3, 6, 1]], [4, 5, 6])</code> should return <code>[ 4, 6, 7 ]</code>.
|
||||
testString: assert.deepEqual(kdNN([[2, 3, 1], [9, 4, 5], [4, 6, 7], [1, 2, 5], [7, 8, 9], [3, 6, 1]], [4, 5, 6]), [4, 6, 7]);
|
||||
- text: <code>kdNN([[2, 3, 1], [9, 4, 5], [4, 6, 7], [1, 2, 5], [7, 8, 9], [3, 6, 1]], [8, 8, 8])</code> should return <code>[ 7, 8, 9 ]</code>.
|
||||
testString: assert.deepEqual(kdNN([[2, 3, 1], [9, 4, 5], [4, 6, 7], [1, 2, 5], [7, 8, 9], [3, 6, 1]], [8, 8, 8]), [7, 8, 9]);
|
||||
```
|
||||
|
||||
</section>
|
||||
|
||||
## Challenge Seed
|
||||
|
||||
<section id='challengeSeed'>
|
||||
|
||||
<div id='js-seed'>
|
||||
|
||||
```js
|
||||
function kdNN(fpoints, fpoint) {
|
||||
|
||||
}
|
||||
```
|
||||
|
||||
</div>
|
||||
</section>
|
||||
|
||||
## Solution
|
||||
|
||||
<section id='solution'>
|
||||
|
||||
```js
|
||||
function kdNN(fpoints, fpoint) {
|
||||
function Node(obj, dimension, parent) {
|
||||
this.obj = obj;
|
||||
this.left = null;
|
||||
this.right = null;
|
||||
this.parent = parent;
|
||||
this.dimension = dimension;
|
||||
}
|
||||
|
||||
function kdTree(points, metric, dimensions) {
|
||||
var self = this;
|
||||
|
||||
function buildTree(points, depth, parent) {
|
||||
var dim = depth % dimensions.length,
|
||||
median,
|
||||
node;
|
||||
|
||||
if (points.length === 0) {
|
||||
return null;
|
||||
}
|
||||
if (points.length === 1) {
|
||||
return new Node(points[0], dim, parent);
|
||||
}
|
||||
|
||||
points.sort(function(a, b) {
|
||||
return a[dimensions[dim]] - b[dimensions[dim]];
|
||||
});
|
||||
|
||||
median = Math.floor(points.length / 2);
|
||||
node = new Node(points[median], dim, parent);
|
||||
node.left = buildTree(points.slice(0, median), depth + 1, node);
|
||||
node.right = buildTree(points.slice(median + 1), depth + 1, node);
|
||||
|
||||
return node;
|
||||
}
|
||||
|
||||
this.root = buildTree(points, 0, null);
|
||||
|
||||
this.insert = function(point) {
|
||||
function innerSearch(node, parent) {
|
||||
if (node === null) {
|
||||
return parent;
|
||||
}
|
||||
|
||||
var dimension = dimensions[node.dimension];
|
||||
if (point[dimension] < node.obj[dimension]) {
|
||||
return innerSearch(node.left, node);
|
||||
} else {
|
||||
return innerSearch(node.right, node);
|
||||
}
|
||||
}
|
||||
|
||||
var insertPosition = innerSearch(this.root, null),
|
||||
newNode,
|
||||
dimension;
|
||||
|
||||
if (insertPosition === null) {
|
||||
this.root = new Node(point, 0, null);
|
||||
return;
|
||||
}
|
||||
|
||||
newNode = new Node(
|
||||
point,
|
||||
(insertPosition.dimension + 1) % dimensions.length,
|
||||
insertPosition
|
||||
);
|
||||
dimension = dimensions[insertPosition.dimension];
|
||||
|
||||
if (point[dimension] < insertPosition.obj[dimension]) {
|
||||
insertPosition.left = newNode;
|
||||
} else {
|
||||
insertPosition.right = newNode;
|
||||
}
|
||||
};
|
||||
|
||||
this.nearest = function(point, maxNodes, maxDistance) {
|
||||
var i, result, bestNodes;
|
||||
|
||||
bestNodes = new BinaryHeap(function(e) {
|
||||
return -e[1];
|
||||
});
|
||||
|
||||
function nearestSearch(node) {
|
||||
var bestChild,
|
||||
dimension = dimensions[node.dimension],
|
||||
ownDistance = metric(point, node.obj),
|
||||
linearPoint = {},
|
||||
linearDistance,
|
||||
otherChild,
|
||||
i;
|
||||
|
||||
function saveNode(node, distance) {
|
||||
bestNodes.push([node, distance]);
|
||||
if (bestNodes.size() > maxNodes) {
|
||||
bestNodes.pop();
|
||||
}
|
||||
}
|
||||
|
||||
for (i = 0; i < dimensions.length; i += 1) {
|
||||
if (i === node.dimension) {
|
||||
linearPoint[dimensions[i]] = point[dimensions[i]];
|
||||
} else {
|
||||
linearPoint[dimensions[i]] = node.obj[dimensions[i]];
|
||||
}
|
||||
}
|
||||
|
||||
linearDistance = metric(linearPoint, node.obj);
|
||||
|
||||
if (node.right === null && node.left === null) {
|
||||
if (
|
||||
bestNodes.size() < maxNodes ||
|
||||
ownDistance < bestNodes.peek()[1]
|
||||
) {
|
||||
saveNode(node, ownDistance);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (node.right === null) {
|
||||
bestChild = node.left;
|
||||
} else if (node.left === null) {
|
||||
bestChild = node.right;
|
||||
} else {
|
||||
if (point[dimension] < node.obj[dimension]) {
|
||||
bestChild = node.left;
|
||||
} else {
|
||||
bestChild = node.right;
|
||||
}
|
||||
}
|
||||
|
||||
nearestSearch(bestChild);
|
||||
|
||||
if (bestNodes.size() < maxNodes || ownDistance < bestNodes.peek()[1]) {
|
||||
saveNode(node, ownDistance);
|
||||
}
|
||||
|
||||
if (
|
||||
bestNodes.size() < maxNodes ||
|
||||
Math.abs(linearDistance) < bestNodes.peek()[1]
|
||||
) {
|
||||
if (bestChild === node.left) {
|
||||
otherChild = node.right;
|
||||
} else {
|
||||
otherChild = node.left;
|
||||
}
|
||||
if (otherChild !== null) {
|
||||
nearestSearch(otherChild);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (maxDistance) {
|
||||
for (i = 0; i < maxNodes; i += 1) {
|
||||
bestNodes.push([null, maxDistance]);
|
||||
}
|
||||
}
|
||||
|
||||
if (self.root) nearestSearch(self.root);
|
||||
|
||||
result = [];
|
||||
|
||||
for (i = 0; i < Math.min(maxNodes, bestNodes.content.length); i += 1) {
|
||||
if (bestNodes.content[i][0]) {
|
||||
result.push([bestNodes.content[i][0].obj, bestNodes.content[i][1]]);
|
||||
}
|
||||
}
|
||||
return result;
|
||||
};
|
||||
}
|
||||
|
||||
function BinaryHeap(scoreFunction) {
|
||||
this.content = [];
|
||||
this.scoreFunction = scoreFunction;
|
||||
}
|
||||
|
||||
BinaryHeap.prototype = {
|
||||
push: function(element) {
|
||||
// Add the new element to the end of the array.
|
||||
this.content.push(element);
|
||||
// Allow it to bubble up.
|
||||
this.bubbleUp(this.content.length - 1);
|
||||
},
|
||||
|
||||
pop: function() {
|
||||
// Store the first element so we can return it later.
|
||||
var result = this.content[0];
|
||||
// Get the element at the end of the array.
|
||||
var end = this.content.pop();
|
||||
// If there are any elements left, put the end element at the
|
||||
// start, and let it sink down.
|
||||
if (this.content.length > 0) {
|
||||
this.content[0] = end;
|
||||
this.sinkDown(0);
|
||||
}
|
||||
return result;
|
||||
},
|
||||
|
||||
peek: function() {
|
||||
return this.content[0];
|
||||
},
|
||||
|
||||
size: function() {
|
||||
return this.content.length;
|
||||
},
|
||||
|
||||
bubbleUp: function(n) {
|
||||
// Fetch the element that has to be moved.
|
||||
var element = this.content[n];
|
||||
// When at 0, an element can not go up any further.
|
||||
while (n > 0) {
|
||||
// Compute the parent element's index, and fetch it.
|
||||
var parentN = Math.floor((n + 1) / 2) - 1,
|
||||
parent = this.content[parentN];
|
||||
// Swap the elements if the parent is greater.
|
||||
if (this.scoreFunction(element) < this.scoreFunction(parent)) {
|
||||
this.content[parentN] = element;
|
||||
this.content[n] = parent;
|
||||
// Update 'n' to continue at the new position.
|
||||
n = parentN;
|
||||
}
|
||||
// Found a parent that is less, no need to move it further.
|
||||
else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
},
|
||||
|
||||
sinkDown: function(n) {
|
||||
// Look up the target element and its score.
|
||||
var length = this.content.length,
|
||||
element = this.content[n],
|
||||
elemScore = this.scoreFunction(element);
|
||||
|
||||
while (true) {
|
||||
// Compute the indices of the child elements.
|
||||
var child2N = (n + 1) * 2,
|
||||
child1N = child2N - 1;
|
||||
// This is used to store the new position of the element,
|
||||
// if any.
|
||||
var swap = null;
|
||||
// If the first child exists (is inside the array)...
|
||||
if (child1N < length) {
|
||||
// Look it up and compute its score.
|
||||
var child1 = this.content[child1N],
|
||||
child1Score = this.scoreFunction(child1);
|
||||
// If the score is less than our element's, we need to swap.
|
||||
if (child1Score < elemScore) swap = child1N;
|
||||
}
|
||||
// Do the same checks for the other child.
|
||||
if (child2N < length) {
|
||||
var child2 = this.content[child2N],
|
||||
child2Score = this.scoreFunction(child2);
|
||||
if (child2Score < (swap == null ? elemScore : child1Score)) {
|
||||
swap = child2N;
|
||||
}
|
||||
}
|
||||
|
||||
// If the element needs to be moved, swap it, and continue.
|
||||
if (swap != null) {
|
||||
this.content[n] = this.content[swap];
|
||||
this.content[swap] = element;
|
||||
n = swap;
|
||||
}
|
||||
// Otherwise, we are done.
|
||||
else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
var dims = [];
|
||||
|
||||
for (var i = 0; i < fpoint.length; i++) dims.push(i);
|
||||
|
||||
var tree = new kdTree(
|
||||
fpoints,
|
||||
function(e1, e2) {
|
||||
var d = 0;
|
||||
var e3 = e1;
|
||||
if (!Array.isArray(e1)) {
|
||||
e3 = [];
|
||||
for (var key in e1) e3.push(e1[key]);
|
||||
|
||||
e1 = e3;
|
||||
}
|
||||
e1.forEach(function(e, i) {
|
||||
var sqd = e1[i] - e2[i];
|
||||
d += sqd * sqd;
|
||||
});
|
||||
return d;
|
||||
},
|
||||
dims
|
||||
);
|
||||
|
||||
return tree.nearest(fpoint, 1, 1000)[0][0];
|
||||
}
|
||||
```
|
||||
|
||||
</section>
|
Reference in New Issue
Block a user